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Abstract
Recently, Large Language Models (LLMs)
have shown impressive language capabilities.
However, most of the existing LLMs are all
English-centric, which have very unstable and
unbalanced performance across different lan-
guages. Multilingual alignment is an effec-
tive method to enhance the LLMs’ multilin-
gual capabilities. In this work, we explore
the multilingual alignment paradigm which
utilizes translation data and comprehensively
investigate the spontaneous multilingual im-
provement of LLMs. We find that LLMs only
instruction-tuned on question translation data
without annotated answers are able to get sig-
nificant multilingual performance enhancement
even across a wide range of languages unseen
during instruction-tuning. Additionally, we uti-
lize different settings and mechanistic inter-
pretability methods to comprehensively ana-
lyze the LLM’s performance in the multilin-
gual scenario. Our code and data is available
at: https://github.com/Shimao-Zhang/
LLM-Multilingual-Learner.

1 Introduction

Large Language Models (LLMs) have recently
shown impressive language capabilities across nu-
merous downstream language tasks (Zhao et al.,
2023). However, most existing LLMs are trained
on extensive high-resource languages text such as
English, Chinese, German, French, and so on (Tou-
vron et al., 2023; Brown et al., 2020; Jiang et al.,
2023), which lead to a significant performance gap
between high-resource languages and low-resource
languages (Huang et al., 2023; Zhang et al., 2023b;
Gao et al., 2024). For the same task and question
contents, using different languages for inputs may
have a significant impact on the model’s perfor-
mance.

Some studies have conducted comprehensive ex-
ploration about how to enhance the capabilities
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of LLMs for low-resource language. The classi-
cal approach typically follows the translate-based
paradigm (Liu et al., 2024), which translating non-
English inputs into English or translating English
data into non-English for instruction tuning. How-
ever, it is difficult to accurately translate all texts
into the target low-resource language (Zhu et al.,
2024), not to mention the increasing translation
cost as the data scale expands. In order to enhance
low-resource languages performance with less cost,
some cross-lingual alignment and transfer strate-
gies have been proposed (Eronen et al., 2023; Zhu
et al., 2024; Zhao et al., 2024a). But all these meth-
ods rely on the data in the target language.

Meanwhile, some studies have explored English-
centric LLMs, revealing that English also partici-
pate in the intermediate latent reasoning process
of these models even when LLMs are prompted
in non-English (Wendler et al., 2024; Zhao et al.,
2024b). These findings suggest that for LLMs,
multiple languages are not completely isolate, and
LLMs have the capability to leverage the connec-
tions between various languages to address prob-
lems in multilingual scenarios. It further demon-
strates the feasibility of cross-lingual capability
transfer. More surprisingly, Kew et al. (2023) dis-
cover that when instruction-tuning LLMs with mul-
tilingual data, it is not necessary to instruction-
tune the model on data from all target languages
to achieve a multilingual ability similar to models
instruction-tuned on all languages.

Intuitively, LLMs have abilities and motivations
to acclimatize themselves to multilingual environ-
ment (Shi et al., 2022). But what should we do to fa-
cilitate LLMs to do this better? Most existing meth-
ods rely on instruction-tuning on the correspond-
ing datasets (Kew et al., 2023; Liu et al., 2024).
However, given the strong capabilities of models
in high-resource languages, which indicates that
LLMs actually possesses the ability and knowledge
to solve problems, such extensive additional anno-
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tated data might not be necessary to help LLMs
improve their multilingual abilities.

In this work, we further investigate the multilin-
gual learning capabilities of LLMs, where we only
train the LLMs on the parallel data without anno-
tated answers (only queries) in a few languages.
Following this pattern, we conduct the experiments
on models in different types (English-centric or
not) and parameter sizes, and test their multilin-
gual capability across a wide range of languages
on different benchmarks. We find that multilingual
question alignment following Zhu et al. (2024) can
effectively enhance the multilingual capabilities of
LLMs. Our results indicate that only tuning on
questions (without annotated answers) in a small
number of languages can bring significant multilin-
gual improvements even across many languages un-
seen during instruction-tuning process, which im-
plies good language generalization. Furthermore,
we also use logit lens (Nostalgebraist, 2020) and di-
mensionality reduction (Pearson, 1901; Hotelling,
1933) techniques to study the latent states of LLMs,
providing more comprehensive perspectives and
empirical results for understanding the multilingual
learning of large language models.

2 Background

2.1 Unbalanced Multilingual Performance

With a much larger number of parameters pre-
trained on a massive corpus, LLMs have shown
the impressive capabilities in a variety of language
tasks (Zhao et al., 2023). These models are mainly
pretrained on English data, which often accounts
for 90% or even more of all training data, such
as LLaMA2 (Touvron et al., 2023), GPT-3 (Brown
et al., 2020), Mistral (Jiang et al., 2023), Falcon (Al-
mazrouei et al., 2023), and so on. We present a par-
tial language distribution of LLaMA-2’s training
data in Table 7 in Appendix A. Meanwhile, most of
the LLMs also show unstable and unbalanced per-
formance in multilingual scenarios, especially for
some low-resource languages (Zhang et al., 2023a;
Zhu et al., 2024). It’s important to enable LLMs to
adapt to a wider range of users and scenarios.

2.2 Cross-lingual Enhancement for Large
Language Models

However, LLMs still exhibit significant shortcom-
ings in multilingual scenarios. Many researchers
propose multilingual LLMs that are specifically ad-
justed for multilingual tasks (Team, 2023; Le Scao

et al., 2023; Wei et al., 2023). But for multilingual
LLMs, researches indicate a decline in their perfor-
mance in English because of the limited tokens and
parameter size (Lin et al., 2022; Scao et al., 2022).

Based on the existing LLMs, researchers have
made great efforts to enhancing the multilin-
gual performance of LLMs, which include two
categories: prompting close-source LLMs and
instruction-tuning open-source LLMs. For the for-
mer, some studies utilize translation-based strate-
gies which prompt ChatGPT to translate the non-
English input into English firstly before solving the
problem (Huang et al., 2023; Qin et al., 2023). This
type of approaches are constrained by the transla-
tion quality of the model itself and is cumbersome
for users.

For the latter, LLMs shows significant improve-
ment of multilingual and multitask abilities and
good task generalization through multilingual mul-
titask fine-tuning (Muennighoff et al., 2022). Chen
et al. (2023) follow the translation-based approach
and instruction-tune the model on a multilingual
version of GSM8K, which is translated from En-
glish GSM8K (Cobbe et al., 2021). Liang et al.
(2024) create a new intermediate language MUL
(Machine-created Universal Language) as a trans-
latable unified representation of shared concepts
across different languages. "X-English" parallel
translation data have also been widely used (Zhu
et al., 2024). In our work, we mainly use this type
of data, i.e. translation data between two different
languages, to enhance multilingual alignment.

2.3 Mechanistic Interpretability
In addition to improving the performance of LLMs,
it is also crucial to understand and explain the prin-
ciples of neural networks and related methods ex-
plicitly. Current works mainly analyze LLMs’ ac-
tions by observing the internal states during the
inference process. Intermediate logits and neuron
activation states are both important objects of ob-
servation.

Although the English-centric LLMs are mainly
trained on English data, they also show good per-
formance across some non-English languages (Shi
et al., 2022). Logit lens (Nostalgebraist, 2020) is
an early proposed technique that using the model
head in the final layer to project the intermediate
latent logits directly to the vocabulary space. It
have been evidenced that LLaMA 2 (Touvron et al.,
2023), a open-source English-centric LLMs, have
explicit English output in its latent states even when
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having non-English inputs (Wendler et al., 2024).
There is also a hypothesis about how LLMs handle
multilingualism that LLMs will solve task by En-
glish with the help of multilingual knowledge, and
output in the target language finally (Zhao et al.,
2024b). All these results indicate that there are con-
nections between various languages for LLMs, and
LLMs have the capability to spontaneously learn to
utilize multiple languages to solve problems. Zhao
et al. (2024b) calculate the overlapping ratio of the
language-specific neurons of different languages in
different layers. The results indicate that neurons
belonging to different languages exhibit clear distri-
bution differences. In our experiments, we utilize
logit lens and dimensionality reduction techniques
to help us better understand the mechanism behind
our findings.

3 Methodology

We investigate the effect of question translation
parallel data on LLMs’ performance across a wide
range of languages even unseen during the fine-
tuning process.

We define the universal set of languages as U:

U = {l0, l1, l2, ... , ln−1} (1)

where li is the i-th language in U, n is the total
number of languages. We let l0 refer to English
specially here.

We select a few of non-English languages Ls =
{li, ..., lk} ⊆ U, and a target language lt ∈ U,
lt /∈ Ls. Then we will construct translation parallel
data from every language l ∈ Ls to target lan-
guage lt. When construct the translation data, we
only use the questions without annotated answers.
Then we get a translation dataset Qtrain including
source question Qs and the corresponding target
question Qt, which means Qtrain = {(qs, qt) |
qs ∈ Qs and qt ∈ Qt}. We instruct-tune the
model on the translation task:

argmin
θ

∑
(qs,qt)∈Qtrain

− log pθ(qt | qs) (2)

where θ is the model parameters, Qtrain is the
whole training translation dataset, qs is the ques-
tion in the source language, qt is the question in the
target language. Then we get the trained model:

θ
′
= θ +∆θ (3)

We use question translation data for training to
eliminate the impact of annotated answers them-
selves. And we use in-context learning for test

while the model haven’t been trained on the corre-
sponding task.

We test the trained model on all languages l ∈ U.
We construct the testing dataset Qtest = {Ql | l ∈
U} for every language, where Ql consists of all
test questions in the language l.

Accuracyl =
∑
q∈Ql

Iθ′ (â = a | q) (4)

Accuracy =

∑
l∈UAccuracyl

|U|
(5)

where I is a function that takes 1 when the propo-
sition is true and 0 otherwise. Ql denotes the test
dataset of language l. U is the universal set of lan-
guages we use in our work. â is the answer that
the model predicts base on q, and a is the golden
answer corresponding to q.

4 Experimental Setup

We conduct our experiments on both English-
centric and non-English-centric models. And we
utilize different representative tasks and different
model parameter sizes to further strengthen our
conclusions. In this section, we introduce our ex-
perimental settings in detailed.

Models We choose representative open-source
LLMs for our experiments:

• Mistral: Mistral-7B-v0.1 (Jiang et al., 2023)
is an advanced open-source English-centric
large language model, which is one of the
most popular open-source LLMs.

• Qwen: To enhance the generalization and re-
liability of our conclusions, we also choose
models of different types and parameter sizes.
Qwen1.5 is a newly released and enhanced
version of Qwen (Bai et al., 2023). Qwen
is pretrained on a multilingual dataset with
a significant portion of the data being in En-
glish and Chinese, which means it is not an
English-centric model. We choose Qwen1.5-
1.8B, Qwen1.5-4B, Qwen1.5-14B for our ex-
periments.

Datasets Following Wendler et al. (2024), we se-
lect test tasks based on two fundamental principles:

1. Obvious Answers: Obvious answers reduce
the entropy during inference process, mini-
mizing the impact of irrelevant tokens on our
analysis.
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Mistral-7B en zh de fr es it nl ja ru sv

base 89.2 92.4 91.8 93.4 94.2 93.8 93.6 93.0 93.2 93.4
zh ⇒ en 95.2 94.8 94.8 95.2 94.4 94.4 94.8 94.4 94.0 95.4
sw ⇒ en 95.4 93.4 94.2 94.4 94.2 94.4 93.0 93.6 93.8 94.8
zh/es ⇒ en 95.2 95.0 95.0 95.0 94.8 92.8 94.6 95.0 94.4 94.8
zh/de ⇒ en 95.2 95.4 94.8 95.2 95.2 95.2 94.8 93.6 94.2 94.6
zh/it ⇒ en 95.4 95.8 94.8 94.0 95.2 92.6 94.4 93.0 94.2 95.2
sw/hi ⇒ en 95.4 94.6 94.4 93.4 93.4 93.6 93.6 94.0 93.8 94.4
sw/th ⇒ en 95.4 95.0 93.8 93.4 93.4 92.8 93.6 92.6 93.2 94.0
zh/es/ru ⇒ en 95.4 95.4 94.4 94.0 94.6 92.6 94.6 94.2 94.0 94.2
zh/de/it ⇒ en 95.2 95.6 94.4 95.0 94.0 93.8 95.0 93.6 94.2 94.6

Mistral-7B sl pl bg no ms is hi th sw bn

base 87.6 93.2 91.6 92.4 91.8 63.2 81.6 83.0 58.0 71.0
zh ⇒ en 94.0 94.0 94.6 92.2 89.0 84.0 88.8 88.4 75.8 81.0
sw ⇒ en 89.8 92.6 93.6 93.4 90.0 72.0 64.4 51.4 81.2 54.0
zh/es ⇒ en 93.2 93.6 94.0 93.0 92.2 81.2 87.0 84.8 75.6 75.4
zh/de ⇒ en 93.4 94.0 94.6 93.6 92.2 86.6 84.8 88.4 71.8 68.6
zh/it ⇒ en 92.6 93.8 94.2 93.6 92.6 84.2 77.6 77.2 71.6 60.0
sw/hi ⇒ en 89.2 93.0 93.2 92.6 90.0 71.8 89.8 87.0 77.6 79.4
sw/th ⇒ en 92.8 92.0 93.2 87.2 84.4 79.4 86.8 84.0 81.0 74.2
zh/es/ru ⇒ en 93.6 94.2 93.4 93.4 91.4 83.8 85.0 86.0 77.0 76.0
zh/de/it ⇒ en 91.2 93.6 94.2 93.4 91.8 83.2 77.2 82.4 69.0 71.4

Table 1: Accuracy of Mistral-7B base model and aligned models on the Amazon Reviews Polarity. We report
at least two sets of results for each language quantity to strengthen our conclusions. The accuracy of randomly
choosing is 50.0%. "X/Y/Z ⇒ T" means using a randomly mixed dataset including 10k X to T, 10k Y to T, 10k Z to
T translation data for instruction-tuning. We highlight the best results for every language.

2. Fixed Answers: Fixed answers (as opposed
to open-ended responses) provide clearer ob-
servation targets, facilitating analysis through
observing the latent outputs of the model. De-
terministic outputs also make it easier for us
to control the model’s outputs.

Based on these, we conduct our experiments on
two types of tasks:

• Emotion Classification: Emotion classifica-
tion is an important and classic NLP task (Al-
swaidan and Menai, 2020), which always
has three common outputs: "positive", "nega-
tive", and "neutral". We choose Amazon Re-
views Polarity1 (Zhang et al., 2015), a famous
dataset includes two classes "positive" and
"negative", to construct the parallel data men-
tioned in §2.2 and the test data. We extract
10K instances from train subset for parallel
data and 500 instances from test subset for
test data respectively.

• Natural Language Inference: Natural lan-
guage inference (NLI) aims to judge the rela-
tionship between a given premise and a hy-
pothesis sentence. There are always three

1https://huggingface.co/datasets/amazon_
polarity

possible outputs: "entailment", "neutral", and
"contradiction". We choose SNLI2 (Stanford
Natural Language Inference) (Bowman et al.,
2015) to conduct our experiments. Follow-
ing the emotion classification task, we extract
10K instances from train subset for parallel
data and 600 instances from test subset for
test data respectively.

Languages We conduct our following experi-
ments across 20 languages in this work. As shown
in Table 7 in Appendix A, we choose English (en),
German (de), French (fr), Swedish (sv), Chinese
(zh), Spanish (es), Russian(ru), Dutch (nl), Italian
(it), and Japanese (ja) as the top 10 highest-resource
languages according to Touvron et al. (2023). Ad-
ditionally, we choose another 10 representative lan-
guages to strengthen our work, including Slovenian
(sl), Polish (pl), Bulgarian (bg), Norwegian (no),
Malay (ms), Icelandic (is), Hindi (hi), Thai (th),
Swahili (sw), and Bengali (bn).

Implementations We all use LoRA (Hu et al.,
2021) to instruction-tune the pre-trained models on
mixed parallel data first. We train LLMs on the
translation data excluding the golden answers to

2https://huggingface.co/datasets/stanfordnlp/
snli
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mitigate the impact of the data of the tasks them-
selves on the model’s capabilities. For controlling
the output more flexibly and the reproducibility, we
use in-context learning rather than fine-tuning. We
use constrained decoding for generation to elimi-
nate the interference of irrelevant outputs on the
results. Considering we mainly focus on the lan-
guage understanding and task solving capabilities,
we use English outputs uniformly if it is not speci-
fied.

More details are shown in Appendix B.

5 Results

In this section, we report the main results across
different experimental settings and conduct some
discussions based on the results.

5.1 Main Results
We report the accuracy of Mistral-7B on emotion
classification task in Table 1. Clearly, we can see
that the models trained on multilingual translation
data outperform the original model significantly
across a lot of languages, which indicates that
model have much stronger multilingual capabil-
ities after a multilingual training. We summarize
our empirical findings as follows:

1. Large language models can learn to han-
dle multilingualism better spontaneously.
Traditionally, fine-tuning or alignment on the
target languages is needed to help the model
adapt. However, our results indicate that
LLMs are able to perform effective learning
and transfer across multiple languages without
parallel data for most of them. As seen, mod-
els has much higher overall accuracy across
20 languages after training on data containing
2-4 languages.

2. High-resource languages are not only good
learners but also good leaders. Is there any
difference when we use high-resource lan-
guages or low-resource languages in our train-
ing data? Our results in Table 1 show that
three models trained on Swahili data achieve
the top three highest accuracy on Swahili,
while the accuracy on high-resource language
is not significantly related to whether the cor-
responding language data is used. More im-
portantly, training on high-resource language
data enables the model to achieve more sta-
ble improvements across multiple languages
compared to that on low-resource languages.

3. A few languages are enough for sponta-
neous multilingual learning. We select
one, two, three languages with English for
instruction-tuning respectively. As seen in
Table 1, although using more languages some-
times leads to more stable improvements,
model trained only on Chinese and English
have achieved similar overall performance im-
provements. This is also consistent with the
findings of Kew et al. (2023).

4. Our findings remain consistent across lan-
guage models of different parameter sizes.
We also present the average accuracy re-
sults of Qwen1.5-1.8B, Qwen1.5-4B, and
Qwen1.5-14B in Table 2 to strengthen our
conclusions. We find significant multilingual
performance improvements across all of these
models.

We have also validated our findings on the other
task, Natural Language Inference (NLI). In this
task, the model needs to determine the relationship
between the hypothesis and the premise as entail-
ment, neutral, or contradiction. We conduct our
experiment on SNLI and report the accuracy of
Qwen1.5-14B on natural language inference task
in Table 3. Similar to the emotion classification
task, we can see that models instruction-tuned on
multilingual translation data significantly outper-
form the base model across these languages, which
confirms that our findings have good generalization
across different tasks.

5.2 Analysis
Building upon the above results, we conduct more
comprehensive observations and analyses of the
model’s behavior.

English is not necessary as the target language
in the training data. As elaborated in Section
4, we use outputs in English uniformly for all lan-
guages in our previous experiments. English has
been widely used for multilingual transfer as a pivot
language (Zhu et al., 2024; Hu et al., 2023). We fur-
ther investigate the case of replacing English with
Italian and report the results in Table 4. Mistral
is an English-centric LLM and Qwen1.5 is not an
English-centric LLM. From the results, we can find
that using Italian as target language leads to dif-
ferent performances on different types of models.
For English-centric LLM, using non-English lan-
guage as target language has a negative impact on

5



Model Qwen1.5-1.8B Qwen1.5-4B Mistral-7B Qwen1.5-14B

base 68.35 79.52 87.07 86.27
zh/es ⇒ en 76.13 81.99 90.83 91.53
zh/de ⇒ en 74.23 82.64 90.81 92.25
zh/it ⇒ en 75.70 83.32 89.10 92.13
sw/hi ⇒ en 75.37 85.32 90.21 90.28

Table 2: Average accuracy of models of different parameter sizes on the Amazon Reviews Polarity. We highlight
the best results for every model.

Qwen1.5-14B en zh de fr es it nl ja ru sv

base 84.50 83.50 74.17 75.17 81.17 78.67 78.17 51.17 76.83 76.17
zh/es ⇒ en 92.50 84.67 82.67 82.83 85.50 83.83 84.67 57.00 82.67 84.33
zh/de ⇒ en 91.83 84.50 83.67 84.50 85.00 83.67 84.5 57.17 81.67 84.33
zh/it ⇒ en 91.67 83.83 80.83 82.67 84.00 80.00 83.50 55.83 81.50 83.33
sw/hi ⇒ en 91.33 85.67 80.67 80.83 83.50 81.50 82.33 55.00 79.50 82.83

Qwen1.5-14B sl pl bg no ms is hi th sw bn

base 63.17 67.83 64.33 43.00 75.00 48.17 61.00 69.67 45.83 41.33
zh/es ⇒ en 66.00 76.83 76.33 37.50 80.67 57.67 71.33 75.00 58.33 40.33
zh/de ⇒ en 66.83 77.00 78.00 35.33 80.50 57.50 73.00 75.00 58.33 43.33
zh/it ⇒ en 65.67 77.33 76.17 36.67 79.00 56.00 70.50 73.67 55.33 41.33
sw/hi ⇒ en 63.00 76.67 72.17 39.67 80.33 54.17 67.67 74.67 56.83 41.33

Table 3: Accuracy of Qwen1.5-14B base model and trained models on the SNLI. We report all of the results on 20
languages. The accuracy of randomly choosing is 33.33%. We highlight the best results for every language.

Model Qwen1.5-1.8B Mistral-7B

base 68.35 87.07
zh/es ⇒ it 73.22 86.38
zh/es ⇒ en 76.13 90.83

Table 4: Accuracy on Amazon Reviews Polarity. We re-
place English with Italian as the target language. Mistral
is English-centric and Qwen1.5 is not English-centric.

Model Amazon Polarity SNLI

base 86.27 66.94
zh/es ⇒ en 90.38 68.72
zh/de ⇒ en 90.75 67.50
zh/it ⇒ en 90.46 67.76
sw/hi ⇒ en 90.53 65.76

Table 5: The model tested on Amazon Reviews Polarity
is trained on SNLI questions. The model tested on SNLI
is trained on Amazon Reviews Polarity questions.

the overall multilingual capabilities of the model.
On the contrary, using Italian rather than English is
also helpful for Qwen’s multilingual performance
improvement, though worse than using English be-
ceuse of the model’s worse capability of Italian
than English.

It is not necessary but more beneficial to use the
train subset corresponding to the test data as
the source of translation data. Following Zhu

Model Same Language Task-agnostic

base 76.86 50.40
zh/es ⇒ en 83.48 77.61
zh/de ⇒ en 83.69 72.28
zh/it ⇒ en 82.33 72.32
sw/hi ⇒ en 84.59 74.92

Table 6: The results of Mistral-7B on emotion classifi-
cation task for different output types. Same Language
means the outputs in the same language with the inputs.
Task-agnostic means using the task-agnostic outputs.

et al. (2024), in our previous experiments, we con-
struct the parallel translation data for instruction-
tuning based on the train subset corresponding to
the test dataset, which have the similar data char-
acteristics and distributions. We further cross-test
the Qwen1.5-14B trained on SNLI on Amazon Re-
views Polarity and the Qwen1.5-14B trained on
Amazon Reviews Polarity on SNLI. We report the
results in Table 5. We can find that although the
models trained on data with different distributions
also have better overall performance in most cases,
they have a worse performance than that trained
on the data corresponding to the target task. That
means the multilingual data is crucial for enhancing
the model’s multilingual capabilities, and similar
types of data is more helpful. This is consistent
with the "Superficial Alignment Hypothesis" (Zhou
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Figure 1: Logit lens on Mistral-7B in Chinese, Japanese and Russian scenarios. The horizontal axes is the
layer num and the vertical axes is the probability. "en" (Orange) means the latent English output corresponding to
the correct answer in the target language. "zh"/"ja"/"ru" (Blue) means the correct answer in the target language.
"all_possible_out" (Cyan) means the probability of all possible outputs in the target language. "all_possible_latent"
(Gray) means the probability of all possible outputs in English.

et al., 2024), which indicates that model learns
knowledge and capabilities almost entirely in pre-
training process, while alignment only guides the
model to utilize the different "subdistribution of
formats". So the data in the same subdistribution
of formats is more beneficial.

How about using outputs in different types?
Except the outputs in English, we also conduct
our experiments by using outputs in different types,
including outputs in the same language with the
inputs and task-agnostic outputs. When using out-
puts in the same language with the inputs, as shown
in Table 6, the model also perform better after
instruction-tuning, while performing worse com-
pared to using English outputs (shown in Table 2)
under the same settings. This confirms our con-
clusion in Section 4 that generating content in the
target language is sometimes another great chal-
lenge for LLMs except understanding and solving
multilingual problems themselves.

We further replace "positive" with "ox" and re-
place "negative" with "horse" to investigate the
cases of using task-agnostic outputs. We report
the results in Table 6. Firstly, we can observe a
significant decrease in multilingual performance
of the base model when using task-agnostic out-
puts, which indicates that task-specific outputs are
important for effective in-context learning (ICL).
Clearly, we find a significant improvement in mul-
tilingual performance of the instruction-tuned mod-
els. By comparing the results before and after train-

ing, we can find that our training greatly improves
the model’s ICL capability on the specific task, and
this capability improvement exhibits excellent mul-
tilingual generalization. Based on the Superficial
Alignment Hypothesis, we infer that the questions
in only a few languages are able to effectively acti-
vate the corresponding subdistribution of formats
across a wide range of languages.

6 Mechanistic Interpretability Analysis

In this section, we further utilize methods men-
tioned in §2.3 to analyze the model’s changes be-
fore and after the training.

6.1 Logit Lens
Following Wendler et al. (2024), we utilize logit
lens to analyze the changes of the model. We utilize
logit lens on Qwen1.5, a series of LLMs that are
not English-centric, and find there is not English
latent outputs in the intermediate layers. And the
prefix token overlapping between target language
and English will also bring errors to the results.
So we choose Chinese, Japanese and Russian as
three representative languages for our experiment,
which shows significant improvement in our results
before. Following Wendler et al. (2024), we use
the outputs in the same language with the inputs
(results shown in Table 6). We conduct our exper-
iments on Mistral-7B and its best trained version
"sw/hi ⇒ en" in Table 6. We report the results in
Figure 1. Clearly, we can observe the following
points: (1) All models generate latent English out-
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Figure 2: PCA (Principal Component Analysis) on Mistral-7B in English, German, French and Hindi
scenarios. Before means the base model. After means the trained model. All logits are mapped into the two-
dimensional representation. Each point in the plot corresponds to one instance.

put before generating outputs in the target language
finally; (2) The proportion of the probability of the
correct answer increases in the sum of all possi-
ble answer probabilities; (3) The probability of all
other possible answers (except correct answer) in
the latent English outputs is nearly zero; (4) The
area of latent English output significantly increases,
which means the trained models perform inference
in English better.

6.2 Principal Component Analysis

We further utilize the dimensionality reduction
technique to visualize the intermediate layer latent
outputs of the model across different languages.
PCA (Principal Component Analysis) is a normal
linear dimensionality reduction technique (Pearson,
1901; Hotelling, 1933), which can be used in some
scenarios where logit lens doesn’t work. Principal
components are a few linear combinations of the
original variables that maximally explain the vari-
ance of all the variables (Greenacre et al., 2022).
We utilize PCA to map the latent logits into the
two-dimensional representation. Based on the pat-
terns shown in Figure 1, we report layer 20, layer
25, layer 30 and the last layer as four representative
layers in Figure 2. We have the following findings:
(1) The points of different languages follow the
similar patterns in layer 20 and layer 25, where
English latent outputs have appeared and outputs
in the target language haven’t appeared. We fur-
ther calculate the Pearson correlation coefficient
of 1 dimension PCA results (Appendix C). There

is a strong linear correlation between representa-
tions of different languages, which also indicates
an uniform latent representation pattern during in-
ference process; (2) Representations belong to dif-
ferent languages exhibit greater differences from
each other in the trained model; (3) The results
of the last layer is similar because of the same
possible outputs; (4) Based on Pearson coefficient
reported in Appendix C, the correlation between
Hindi (low-resource language) and other languages
(high-resource language) significantly improves.

7 Conclusion

In this paper, we find that LLMs only trained on
translation data without annotated answers are able
to get a significant multilingual performance im-
provement even across a wide range of unseen
languages. We conduct experiments on differ-
ent models, different benchmarks and 20 different
languages. Our results indicate that using ques-
tion translation parallel data can significantly en-
hance the in-context learning capabilities of LLMs.
And these improvements demonstrate excellent
model and language generalization. Furthermore,
we also conduct comprehensive analysis based on
some mechanistic interpretability methods, includ-
ing logit lens and PCA dimensionality reduction
technique. Our work demonstrates the enormous
potential of LLMs for efficient multilingual capa-
bility improvement. We hope our work can inspire
the community to further explore this promising
direction for the better multilingual alignment.
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8 Limitations

We aim to draw more attention to the multilin-
gual alignment which is a promising research direc-
tion. Despite our work has demonstrated the LLMs’
strong capability of multilingual generalization and
the great potential of efficient multilingual enhance-
ment, there are still some limitations waiting for re-
search. Because we investigate the models trained
on question translation data without annotated an-
swers in our work, we utilize few-shot learning to
help model handle the target task better. Analyzing
the models which haven’t been instruction-tuned
on the target task properly in a zero-shot setting
would further strengthen the conclusions.

Due to the limited resources, we conduct our
experiments on different LLM scale from 1.8B to
14B in this work. We are more than willing to
verify our conclusions on larger LLMs (70B or
larger) if more resources are available in the future.
Meanwhile, we mainly utilize automatic translation
engine in our work because of the limited resources,
while translation data annotated by native speakers
would be more accurate.
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A LLaMA 2 Language Distribution

Language Percent

en 89.70%
unknown 8.38%
de 0.17%
fr 0.16%
sv 0.15%
zh 0.13%
es 0.13%
ru 0.13%
nl 0.12%
it 0.11%
ja 0.10%

Table 7: Top-10 (except unknown) lanaguage distri-
bution in LLaMA-2’s pretraining data (Touvron et al.,
2023). The majority of these data is English data. And
the unknown category is partially made up of program-
ming code data.

B Additional Experimental
Implementations

For instruction-tuning process we mentioned above,
we use LoRA (rank = 8, α = 16) with 3 epochs,
batch_size = 16, learning_rate = 5e-5, val_size =
0.05, lr_scheduler_type = cosine, cutoff_len = 2048
based on the settings of LLaMA-Factory3 (Zheng
et al., 2024), a widely used and recognized open-
source project for LLMs efficient fine-tuning. We
use single NVIDIA RTX A6000 48GB or single
NVIDIA Tesla V100 SXM2 32GB for training.
Training time varies from 4 hours to 10+ hours
depending on the language and total instance quan-
tity.

We construct 10k parallel data for every lan-
guage pair used for training. For example, for
"zh/de-en" setting of Mistral-7B, we construct a
dataset including 10k Chinese-to-English transla-
tion instances and a dataset including 10k German-
to-English translation instances firstly. Then we
instruction-tune the Mistral-7B model only on 20k
randomly mixed translation data.

We use test data and few-shot examples trans-
lated from English by Google Translate for all lan-
guages to minimize the impact of test dataset and
few-shot examples themselves and ensure testing
fairness across different languages. We choose the

3https://github.com/hiyouga/LLaMA-Factory

few-shot examples which are not in our training
data and test data.

Additionally, we find that not only non-English
inputs but also non-English outputs have significant
impacts on the model’s performance. For exam-
ple, for Mistral-7B and emotion classification task,
the accuracy on Hindi is 0.5 if we use outputs in
Hindi, while the accuracy is 0.816 if the output is
"positive" or "negative". This implies that generat-
ing content in the target language is another great
challenge for LLMs, which is distinct from under-
standing and solving problems in the corresponding
language.

C Pearson Correlation Coefficient Based
on PCA

Layer 20 Base Trained

en-de 0.9711 0.9738
en-fr 0.9798 0.9814
en-hi 0.9140 0.9491
de-fr 0.9823 0.9833
de-hi 0.9489 0.9703
fr-hi 0.9434 0.9664

Table 8: Pearson correlation coefficient of 1 dimension
PCA results in layer 20 in Figure 2.

Layer 25 Base Trained

en-de 0.9223 0.9122
en-fr 0.9378 0.9298
en-hi 0.5442 0.7316
de-fr 0.9751 0.9749
de-hi 0.7199 0.8838
fr-hi 0.7109 0.8731

Table 9: Pearson correlation coefficient of 1 dimension
PCA results in layer 25 in Figure 2.
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