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ABSTRACT

Weakly supervised temporal action detection is a Herculean task

in understanding untrimmed videos, since no supervisory signal

except the video-level category label is available on training data.

Under the supervision of category labels, weakly supervised detec-

tors are usually built upon classiiers. However, there is an inherent

contradiction between classiier and detector; i.e., a classiier in

pursuit of high classiication performance prefers top-level dis-

criminative video clips that are extremely fragmentary, whereas

a detector is obliged to discover the whole action instance with-

out missing any relevant snippet. To reconcile this contradiction,

we train a detector by driving a series of classiiers to ind new

actionness clips progressively, via step-by-step erasion from a com-

plete video. During the test phase, all we need to do is to collect

detection results from the one-by-one trained classiiers at various

erasing steps. To assist in the collection process, a fully connected

conditional random ield is established to reine the temporal lo-

calization outputs. We evaluate our approach on two prevailing

datasets, THUMOS’14 and ActivityNet. The experiments show that

our detector advances state-of-the-art weakly supervised tempo-

ral action detection results, and even compares with quite a few

strongly supervised methods.
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1 INTRODUCTION

classifier classifier classifier

Figure 1: Illustration of our detector.Aclassiication network

irstly discovers the most discriminative video segments in

response to the action łshootingž. Then these mined snip-

pets, marked in red, are erased from the training video. In

this igure, the erased segments aremarked inwhite and bor-

dered with dotted lines at the next step. Another action clas-

siier is trained on the remaining clips, which forces the clas-

siier to explore other discernible snippets neglected by the

previous one.We perform such processes for several rounds,

and collect all mined video clips as the inal temporal detec-

tion result.

During the past few years, action analysis has drawn much at-

tention in the area of video understanding. There is an amount of

research on this issue, based upon either hand-crafted feature rep-

resentations [24, 44, 47], or deep learning model architectures [1,

7, 38, 43]. A great deal of existing work handles action analysis

tasks in a strongly supervised manner, where the training data

of action instance without backgrounds is manually annotated or

trimmed out. In recent years, several strongly supervised methods

have achieved satisfactory results [40, 43, 49]. However, it is labori-

ous and time-consuming to annotate precise temporal locations of

action instances on increasingly large scale video datasets today.

Additionally, as pointed out in [35], unlike object boundary, the

deinition of exact temporal extent of the action is often subjective

and not consistent across diferent observers, which may result in

additional bias and error. To overcome these limitations, utilizing

the weakly supervised approach is a reasonable choice.

In this paper, we attempt to address the temporal action detec-

tion problem, on which our model predicts the action category as

well as the temporal location of action instance within a video. In
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the task of weakly supervised learning, only video-level category

label is provided as supervisory signal, and video clips containing

action instances intermixed with backgrounds are untrimmed dur-

ing the training process.

Detectors under weak supervision are often based on classiiers,

since explicit labels are only available for classiication of entire

videos. However, a classiier difers strikingly from a detector. For

purpose of better classiication performance, a classiier desires

to discover the most discriminative snippets that contribute most

towards category correctness. Generally speaking, these top-level

discriminative video clips are of short duration and temporally

scattered. In contradiction to the classiier, a detector is supposed

to ind all video frames containing the certain action instance and

hates any omission of ground truth. The contradiction between

detector and classiier makes it diicult to it a classiication model

to a detection task.

We deal with this contradiction by step by step erasing clips

with high classiication conidence for several times in training.

As illustrated in Figure 1, the most discernible snippets about the

action łshootingž, such as łpenalty shotsž, are likely to be removed

at the irst erasion step. In this case, the classiiers trained at subse-

quent steps have no choice but to seek other relevant clips such as

łmidielder’s shotsž or łscoring goalsž, since the top-level discrim-

inative video segments have been deleted and are invisible to

these classiiers. By erasing discernible clips step by step, clas-

siiers trained at diferent steps are capable of inding diferent

actionness snippets. In the test phase, we only need to collect de-

tection results from the one-by-one classiiers at various erasing

steps. Consequently, the fusion of erased video snippets during the

whole detection process constitutes the integral temporal duration

of an action. However, limited by the representative ability of clas-

siiers, our model might misclassify a handful of clips. To assist

in collecting detection results from the one-by-one classiiers, we

further establish a fully connected conditional random ield (FC-

CRF) [22], in order to retrieve the ignored actionness snippets as

well as mitigate detection noises. Particularly, our FC-CRF endows

the detector with the prior knowledge that the extent of action

instance on a temporal domain should be continuous and smooth.

Based on this prior knowledge, the FC-CRF is helpful in connect-

ing separated actionness clips and deleting isolated false-positive

detection results.

In a nutshell, our main contributions in this paper are as follows:

• We present a weakly supervised model to detect temporal

action in untrimmed videos. The model is trained with step-

by-step erasion on videos to obtain a series of classiiers.

In the test phase, it is convenient to apply our model by

collecting detection results from the one-by-one classiiers.

• To our best knowledge, this is the irst work that introduces

the FC-CRF to temporal action detection tasks, which is

utilized to combine the prior knowledge of human beings

and vanilla outputs of neural networks. Experimental results

show that the FC-CRF boosts detection performance by 20.8%

mAP@0.5 on ActivityNet.

• We carry out extensive experiments on two challenging

untrimmed video datasets, i.e., ActivityNet [10] and THU-

MOS’14 [20]; the results show that our detector achieves

comparable performance on temporal action detection with

many strongly supervised approaches.

2 RELATEDWORK

Action Recognition & Temporal Detection with Deep Learn-

ing. During the past few years, driven by the great success of

deep learning in the computer vision area [33, 54, 61], a number of

models [1, 11, 32, 38, 42, 43, 46] with deep architectures, especially

Convolutional Neural Network (CNN) or Recurrent Neural Net-

work (RNN), have been introduced to video-based action analysis.

Karpathy et al. [1] irst employ deep learning for action recogni-

tion in video, and design a variety of deep models which process

a single frame or a sequence of frames. Tran et al. [43] construct

a C3D model, which executes 3D convolution in spatial-temporal

video volume and integrates appearance and motion cues for bet-

ter representation. Wang et al. [49] propose Temporal Segment

Network (TSN), which inherits the advantage of the two-stream

feature-extraction structure, and leverage sparse sampling scheme

to cope with longer video clip. Qiu et al. [32] present pseudo-3D

(P3D) residual networks to recycle of-the-shelf 2D networks for

a 3D CNN. Carreira and Zisserman considerably improve perfor-

mance in action recognition by pretraining Inlated 3D CNNs (I3D)

on Kinetics. Apart from dealing with action recognition, there are

some other work to address action detection or proposal generation

[4, 5, 13, 14, 17, 26ś28, 36, 37, 53, 55, 56, 58, 60, 62]. Shou et al. [37]

utilize a multi-stage CNN detection network for temporal action

localization. Escorcia et al. [8] propose DAPs model which encodes

the video sequence with RNN and retrieves action proposals at

a single process. Lin et al. [28] skip the proposal generation step

with a single shot action detector (SSAD). Shou et al. [36] devise

the Convolutional-De-Convolutional (CDC) network to determine

precise temporal boundaries. Our approach difers from the afore-

mentioned works: they build deep learning models upon precise

temporal annotations or trimmed videos, whereas our model di-

rectly employs the untrimmed video data for training and requires

only video-level category labels.

Weakly Supervised Learning in Video Analysis. Although

strongly supervised methods make up the bulk of the solutions to

video analysis tasks, there is some research work [2, 3, 12, 16, 23, 25,

41, 48] which adopt weakly supervised approach to action analysis

in video. The supervisory information used within those methods

for conducting the training includes: movie scripts [25, 31], tempo-

rally ordered action lists [2, 16], video-level category label [48] or

web videos and images [12], etc. Laptev et al. [25] and Marszalek et

al. [29] focus on mining training samples from movie scripts for ac-

tion recognition, without applying an accurate temporal alignment

of the action and respective text passages. Huang et al. [16] address

action labeling by introducing the extended connectionist temporal

classiication framework (CTC) adapted from language model to

evaluate possible alignments. Sun et al. [41] apply cross-domain

transfer between video frames and web images for ine-grained

action localization. Wang et al. [48] establish the UntrimmedNets to

work onweakly supervised action detection problem. The work pro-

posed in [39] shares a similar training strategy with our approach,

and the diference is that it trains a single classiier by randomly
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Figure 2: Overview of training process with step-by-step erasion. The input video is averagely divided into non-overlapping

snippets, and fed into a classiier (e.g., TSN) to obtain snippet-wise responsive scores. Based on the scores, we compute the

erasing odds for every snippet by applying a soft mask to category probability. Afterwards these snippets are removed with

their erasing probabilities. At the next step, another classiier is trained on the remaining video data according to such a

strategy, and it is expected to discover other actionness snippets missed by the previous classiier. We repeat the cycle for

several times until no useful clips are revealed.

hiding video snippets for the localization task, while we focus on

the detection task by recurrently training a series of classiiers.

Our approach draws the inspiration from the work proposed

in [50], which applies the erase-and-ind strategy to image-based

semantic segmentation in a weakly supervised manner. It recur-

rently trains a set of classiiers to discover the discriminative image

regions related to a speciic object. This inspired us to develop an

erase-and-ind method for video understanding. The core diference

on two learning strategies is that it needs to additionally train a

strongly supervised segmentation network using pixel-wise pseudo

labels generated by these classiiers, whereas we directly collect

the outputs from the series of trained classiication networks for

prediction. Our approach decentralizes the detection task to several

disparate classiication networks, so there is no requirement for

our detector to train any extra strongly supervised model.

3 STEP-BY-STEP ERASION, ONE-BY-ONE
COLLECTION

Our model consists of two parts: training with step-by-step era-

sion on videos and testing by collecting results from one-by-

one classiiers. During the training process, we progressively erase

the snippets with high conidence of action occurrence. By doing

so, we obtain a series of classiiers with respective predilections for

diferent types of actionness clips. In the test phase, we iteratively

select snippets with action instances based on the trained classiiers,

and reine the fused results via an FC-CRF.

3.1 Training with Step-by-step Erasion

As shown in Figure 2, we alternate with 3 operations: erasing proba-

bility computation, snippet erasion and classiier training for several

rounds. Suppose that a video V = {vn }
N
n=1 contains N clips, with

K video-level category labels Y = {yk }
K
k=1

. Given a snippet-wise

classiier speciied by parameters θ , we can obtain the vanilla clas-

siication score ϕ(V ;θ ) ∈ RN×C , where C is the number of all

categories.

At the t th erasing step, we denote the remaining clips of a train-

ing video as V t and represent the classiier as θ t . For the ith row

ϕi, : of ϕ(V
t ;θ t ), corresponding to the raw classiication score of

the ith clip, we compute the intra-snippet probability of the jth

category with softmax normalization:

pi, j (V
t ) =

exp(ϕi, j )
∑C
c=1 exp(ϕi,c )

. (1)

In practice, the softmax transformation may amplify noisy acti-

vation responses for background clips. Moreover, solely modeling a

single snippet is not enough to harness global information among

diferent clips in the whole video. To amend the intra-snippet prob-

ability, we present an inter-snippet soft mask mechanism. For the

jth column ϕ:, j representing the conidence of the jth category

over all clips, we apply min-max normalization to them. Although

a background clip may have its own highest activation response

to one certain category, the responsive intensity is likely lower

than its ground-truth peerswith suchkind of action instance.

The min-max operation substantially suppresses the score of back-

ground clips whose category responses are relatively weak. There-

fore, we deine the inter-snippet soft mask w.r.t. the jth category

upon the ith clip as:

αi, j (V
t ) = δτ (

ϕi, j −minϕ:, j

maxϕ:, j −minϕ:, j
) , (2)
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Algorithm 1 Training with Step-by-step Erasion

Input: θ0: initial snippet-wise classiier; τ : discounting threshold

about the soft mask; D0
= {(V 0,Y ) | V 0

= {vn }
N
n=1,Y =

{yk }
K
k=1

}: training set

Output: {θ t }Tt=1: trained models at various steps

1: Initialize sequence number of erasing step t = 1 and trained

model count T = 0

2: repeat

3: Train the classiier θ t from θ t−1 with Dt−1

4: Initial Dt
= ∅

5: for each video V t−1 in Dt−1 do

6: Initial V t
= V t−1

7: Compute the classiication score ϕ(V t ;θ t )

8: for yj ∈ Y do

9: for vi ∈ V
t do

10: Compute si, j (V
t ) as Eq. (4)

11: Generate a sequence ϵ of N random values

within [0 ,1]

12: Obtain erasing clips: E = {vi | si, j (V
t ) > ϵi }

13: Erase clips from the video: V t
= V t \ E

14: Update training data: Dt
= Dt ∪ (V t ,Y )

15: Update states: T = T + 1; t = t + 1

16: until no useful clips are found

where δτ rescales the result of the min-max normalization upon a

discounting threshold τ ∈ (0, 1]:

δτ (·) =

{
1 if · > τ ;
·

τ otherwise .
(3)

The discounting threshold τ determines how much rigorous the

erasing standard we formulate: the larger τ implies the less video

clips are removed. Hence, αi, j ∈ [0, 1] constitutes a soft mask. Un-

like many attention mechanisms learned from neuron parameters,

this inter-snippet mask needs no extra surgery on neural networks,

and it can mitigate the noise from background clips in a simple way.

Finally, we compute the erasing odds by element-wise multiplying

the category probability with the soft mask:

si, j (V
t ) = αi, j (V

t )pi, j (V
t ) . (4)

By the end of current erasing step t , we remove snippets ac-

cording to their erasing probability s from the remaining video,

and utilize the rest snippets to train a new classiier at the next

erasing step t + 1. During the whole training process, we repeat

such erasing steps to gradually ind out discriminative snippets as

in Algorithm 1.

Ideally, we would stop the training process when no more useful

video clips can be discovered. However, it is impossible to make

such a perfect decision in reality, because using only the video-level

category labels is insuicient to provide temporal information. In

preliminary experiments, we have found that the excessive erasion

introduces a spate of fragmentary snippets that are helps little in

making up an integral segment with action instance. In other words,

scatered video clips mined with excessive erasion are hardly

combined into a continuous segment. Hence, the normalized

number of integral erased segments with the jth category at the

T th step is a useful criterion:

mT
j =

|MT
j |

|M1
j |
, (5)

where MT
j is composed of video segments with continuous clips

removed up to the T th step, and its cardinality is normalized by

|M1
j | to alleviate the interference of various action durations. At the

T th step, we stop erasing for the jth class ifmT
j nearly no longer

changes, and reserve classiiers up to the (T − 1)th step. Although

the terminal criterionmT
j is just based on our empirical observation,

it is efective in practice, which we will elaborate in the Section 4.

3.2 Testing with One-by-one Collection

As Figure 3 depicts, we collect the results from the one-by-one

trained classiier, and reine them with an FC-CRF. In the test phase,

we have obtained several trained classiiers {θ t }Tt=1 from Algo-

rithm 1. Our basic idea is to iteratively fetch snippets with high

erasing score from one-by-one classiiers, and fuse them together

as the inal detection results.

Denote a video V as a sequence of N clips {vn }
N
n=1. It is natural

to take the average of the category probability p and the soft mask

value α over the T steps for the ith clip of the jth category as:

α i, j (V ) =
1

T

T∑

t=1

αi, j (V ) , (6)

pi, j (V ) = so f tmax(

T∑

t=1

logpi, j (V )) , (7)

where variable deinitions on the right-hand side of equations follow

the subsection 3.1, and the detection conidence s̄ = p̄ᾱ can be

readily computed.

However, the representative ability of video-based classiiers is

still imperfect nowadays. Accumulated misclassiied results over

one-by-one classiication networks will severely degrade the de-

tection performance. Thus, the direct collection of outputs from

these multi-step classiiers is powerless to delineate the complete

and precise temporal location. Due to this limitation of the classi-

iers, it is imperative to reine the average results through our prior

knowledge.

As pointed out in [18, 30, 52], the temporal coherence is ubiqui-

tous in videos. In other words, the temporally vicinal video clips

tend to contain similar information, and the actionness extent on

time domain should be continuous. Therefore, neighbor snippets

are inclined to have the same label. We would like to impart this

knowledge to an FC-CRF [59]. To our best knowledge, the FC-CRF

is irst introduced to video-based temporal action detection in this

paper. In the formulation of conventional linear-chain CRFs, only

the relationship between adjacent nodes is modeled. Unlike linear-

chain CRFs, our FC-CRF takes into consideration the relationship

between any and all nodes, in order to make full use of global in-

formation in a video. On the whole, our FC-CRF employs the Gibbs
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Figure 3: Testing with one-by-one collection. First of all, we it-

eratively collect predicted clips from one-by-one trained clas-

siiers. Then average fusion is adopted over the results. Fi-

nally, the category probability of all clips are reined by an

FC-CRF to incorporate prior knowledge and classiier out-

puts.

energy function of a label assignment l = {l1, l2, ..., lN−1, lN } as:

E(l) =

N∑

i=1

ψu (li ) +

N∑

i,j

ψp (li , lj ) , (8)

where li and lj are category labels of the ith and jth clips. The two

terms on right-hand side respectively represent classiier predictions

and prior knowledge. We compute the irst term upon unary poten-

tialψu (li ) = − logpi , where pi = {pi,1,pi,2, ...,pi,C−1,pi,C } is the

ith component of average classiication probability p obtained from

Eq. (7). The second term is based on pairwise potential ψp (li , lj )

between arbitrary clip pairs i and j, expressed as:

ψp (li , lj ) = ωµ(li , lj )exp(−
∥i − j∥2

2σ 2
) , (9)

where the compatibility function is determined as in the Potts

model, i.e., µ(li , lj ) = 1 if li , lj , otherwise µ(li , lj ) = 0. That is to

say, we only penalize nodes in the FC-CRF with distinct labels. We

encourage snippets i and j in temporal proximity to be assigned the

same label, with a Gaussian kernel. Intuitively, our Gaussian kernel

exerts an inluence between any two snippets, and the inluence

has an exponential decay as the temporal distance increases. There

are two hyper-parameters of the FC-CRF: ω is the fusion weight to

balance unary and pairwise potentials, and σ controls the scale of

Gaussian kernel.

After establishing an FC-CRF with the Gibbs energy E(l), we

approximate probabilistic inference with mean ield as in [59], and

compute the reined category probability p̃i for the i
th clip. Accord-

ing to this probability, we select the clips whose s̃i, j = α i, j p̃i, j > 0.5

as inal temporal detection results.

4 EXPERIMENTS

In this section, we irst introduce the datasets and our implementa-

tion. Then we dive deeper in details of the proposed temporal action

detector, including ablation studies, training terminal criterion and

stability of hyper-parameters. Finally, we report our temporal detec-

tion results, and make comparisons to state-of-the-art approaches.

Figure 4: Box-whisker plot of ground truth duration. The

time span of ground truth on THUMOS’14 is much shorter

than that on ActivityNet. In particular, the median duration

of actions on THUMOS’14 is 3.1 seconds, while that on Ac-

tivityNet is 28.3 seconds. Due to this fact, we adopt diferent

sampling strategies and soft mask settings.

4.1 Datasets

We conduct our experiments on two prevailing datasets comprised

of untrimmed videos, i.e., THUMOS’14 [20] and ActivityNet [10].

Note that we only use video-level category labels as our super-

visory signal in training, albeit both datasets are annotated with

the temporal action boundaries.

THUMOS’14 has 101 classes with 18,394 videos, a subset of

which with 20 action categories is employed for temporal action

detection tasks. Following [60], two falsely annotated videos (270,

1496) on the test set are excluded in the experiment. In general, ev-

ery video has a primary action category. Additionally, some videos

may contain one or more action instances from other classes. Fol-

lowing the previous temporal detection work [13, 48, 53], we use the

validation set for training, and evaluate our detection performance

on the test set.

ActivityNet is a challenging benchmark for action recognition

and temporal detection with a 5-level class hierarchy. We conduct

experiments on its version 1.2, which has 100 classes with 9,682

videos, including 4,819 training videos, 2,383 validation videos, and

2,480 test videos. On ActivityNet, each video belongs to one or

more action categories as THUMOS’14. Following works [53, 60]

on ActivityNet v1.2, we train our detector on the training data and

test it on the validation set.

As for evaluation metrics, we follow the standard protocol,

reporting mean Average Precision (mAP) at diferent temporal

Intersection-over-Union (tIoU) thresholds. In such a formulation,

the temporal action detection task can be viewed as an information

retrieval problem. For every action category, all predicted video clips

on the test set are ranked by detection conidence. The prediction

for a certain class is deemed to be correct if and only if its tIoU with

ground truth is greater than or equal to the threshold, and the mAP

is deined upon these correct predictions. Both datasets have their

own convention of tIoU thresholds since they originate from two

competitions respectively. On the THUMOS’14, the tIoU thresholds

are {0.1, 0.2, 0.3, 0.4, 0.5}. On ActivityNet, the tIoU thresholds are
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{0.5, 0.75, 0.95}, and the average mAP at theses thresholds is also

reported.1

4.2 Implementation Details

We implement our algorithm on the Cafe [19], and choose TSN [49]

as our backbone classiication network. For sake of an apples-to-

apples comparison, we keep identical settings with Untrimmed-

Net [48]: batch_size = 256, momentum = 0.9, weiдht_decay =

0.0005, and normalize the label with ℓ1-norm [51] for multi-label

videos. Before erasion, we initially train our model for decent clas-

siication performance. In the step-by-step erasion phase, the max

iteration number is 8,000 for both streams of TSN at each erasing

step, and we stop training as soon as the classiication network

converges on the validation data. We repeat erasing processes for 4

times at most on the two datasets. During the training process, the

base learning rate is 0.0001 for the spatial stream, and decreases to

one-tenth of the original learning rate every 1,500 iterations. For

the temporal stream, we set the base learning rate as 0.0002, with

the same decay strategy as the spatial stream.

As shown in Figure 4, the duration of ground truth on Thumos’14

is evidently shorter than that on ActivityNet. To this end, the exper-

iment settings are slightly diferent between these two datasets. For

ActivityNet, we sample snippet scores every 15 frames as a detec-

tion snippet and apply soft mask threshold τ = 0.001 to keep more

snippets. In the case of THUMOS’14, we extract detection snippets

at intervals of 5 frames and use a more rigorous mask threshold

τ = 0.5, since its ground truths last a shorter time.

4.3 Experimental Veriication & Investigation

In this subsection, we investigate the further details of the pre-

sented model in three respects. For training, we irstly focus on the

necessity of soft mask and the signiicance of step-by-step erasion.

In addition, the criterion for training termination is evaluated. For

testing, we explore the stability of hyper-parameters in FC-CRF and

verify the efectiveness of FC-CRF in collection procedure.

Ablation about soft mask and erasion steps. Firstly, we eval-

uate the utility of step-by-step erasion. After a certain number of

erasing steps, we directly take average of predictions as Eq. 6 and

Eq. 7 on test data for evaluation. As shown in the left-hand side of

Figure 5, a series of erasing operations indeed improves the detec-

tion performance from 5.3% to 9.5% mAP@0.5 on ActivityNet, and

from 6.9% to 9.9% mAP@0.5 on THUMOS’14. However, excessive

erasion may introduce many false positive predictions and reduce

the precision, so the mAP@0.5 declines after the 4th step on both

datasets. To investigate the necessity of soft masks, we also report

results without the mask on the right-hand side of Figure 5. From

the side-by-side comparisons in the igure, we observe that the soft

mask plays a role in two aspects. For one thing, as mentioned in the

subsection 3.1, it can suppress the detection score of background

clips, so it mitigates the performance degradation from excessive

erasion. For another, it also imposes a tougher standard to select

erasing snippets, and thus the results with mask at the early steps

are slightly inferior to those without mask. Seeing as the tougher

standard favors discriminative predictions with more certainty, this

1Strictly speaking, the average mAP is practically calculated with tIOU thresholds
[0.5 : 0.05 : 0.95].

6

7

8

9

10

W/ Mask W/O Mask

m
A

P
@

0
.5

  
  
 (

%
)

Step1 Step2 Step3 Step4

(a) THUMOS’14.

5

6

7

8

9

10

W/ Mask W/O Mask

m
A

P
@

0
.5

  
  
 (

%
)

Step1 Step2 Step3 Step4

(b) ActivityNet.

Figure 5: Ablation about sot mask and erasion steps.

reverses at later steps, and the performance with mask is better

than those without mask at last.

Discussion on training termination. As mentioned above,

excessive erasion has a negative inluence on detection performance.

To this end, it is of signiicance to ind a criterion for erasing ter-

mination. In subsection 3.1, we propose a criterionmT
j as Eq. 5 for

the jth category at the T th step. We evaluate its efectiveness on

ActivityNet, and report themT
j over the 5 categories of its top-level

hierarchy for an intiutive illustration. For each top-level category,

the value of mAP@0.5 and mT
j are calculated using the average

of its subclasses. As Figure 6 depicts, the obvious degradation of

detection performance occurs with the nearly invariablemT
j , and

we terminate erasing as shown in Figure 6(b). In this case, 3 out of 5

classes are ceased to be trained at the optimal step as Figure 6(a) de-

picts. The other 2 classes achieve a close second-best performance,

in which the mAP@0.5 is inferior to that of the best by less than

0.4%. Since only given video-level category labels, we cannot al-

ways stop at the optimal step for every class. The criterionmT
j is

simple yet efective to some extent, and at least prevents detection

performance from sufering heavy loss. In the future, we may try

on a more advanced terminal criterion.

Efectiveness of FC-CRF and its hyper-parametric stabil-

ity. In the test phase, there are two crucial hyper-parameters w.r.t.

our FC-CRF: ω dominates the weight of pairwise potential and σ

handles the scale of Gaussian kernel. Thus, we carry out two ex-

periments at the irst training step to evaluate the sensitivity of the

two hyper-parameters on each dataset. On THUMOS’14, we irst

ix σ to 1.0 and vary ω from 0 to 9.0. As ActivityNet has diferent

sampling strategies and soft mask settings, we choose diferent

hyper-parametric ranges in the irst experiment: σ = 10.0 and

ω ∈ [0, 90.0]. The results are shown in the left-hand part of Figure 7.

It is quite evident that simply fusing the detection scores (in this
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Figure 7: Hyper-parametric stability of FC-CRF. On both

datasets, we evaluate the performance by mAP@0.5. The

models on the left are with diferent ω and a ixed σ , while

the models on the right are with diferent σ and a ixed ω.

case ω = 0) is not an appropriate choice, leading to a poor mAP

performance. By properly choosing the value of ω, we can signif-

icantly improve the detection performance, and the performance

remains highly stable across a wide range of ω. In the second the

experiment, we ix the setting ofω and change the value of σ . We ix

ω = 3.0 on THUMOS’14 and ω = 20.0 on ActivityNet. As illustrated

in the right-hand part of Figure 7, a proper σ can remarkably boost

the detection performance. Likewise, the performance is highly

stable across a wide range of σ . To quantitatively demonstrate the

efectiveness of our FC-CRF, we also report the mAP at various

tIoU thresholds for a pair of suitable hyper-parameters in Table 1.

The FC-CRF drastically increases mAP@0.5 by 20.8% and 7.1% on

ActivityNet and THUMOS’14 respectively.

Table 1: Efectiveness of FC-CRF.

(a) mAP@tIoU on THUMOS’14. ω = 3.0, σ = 3.0.

tIoU 0.5 0.4 0.3 0.2 0.1

W/ FC-CRF 14.0 20.4 28.5 36.3 42.9

W/O FC-CRF 6.9 11.9 19.3 28.2 37.8

(b) mAP@tIoU on ActivityNet. ω = 20.0, σ = 40.0.

tIoU Avg. 0.95 0.75 0.5

W/ FC-CRF 14.9 2.6 14.1 26.1

W/O FC-CRF 2.6 0.38 2.1 5.3

4.4 Evaluation of Temporal Action Detection

Qualitative results. We irst visualize the learning process of our

detector in Figure 8. We can observe that a series of erasing steps

facilitates the process to generate an integral video segment with

action instance. Then the FC-CRF retrieves the missed predic-

tion occurring within the ground-truth segments, and moderates

noises caused by background snippets occurring within about

10-11, 31-32 and 65-66 seconds to some extent. It is worth mention-

ing that there is an interesting failure case approximately from 14 to

16 seconds in the video. In these two seconds, a coach demonstrated

the run-up technique, but did not actually complete the whole long-

jump activity. As human beings, we can easily distinguish this from

the real long-jump. However, the detector mistakes this snippet

possibly because it is diicult for classiication networks to reason

the temporally contextual relationship. In the area of video under-

standing, researchers still have a long way to go to enhance such a

reasoning ability for recognition models.

Quantitative results.We inally report the performance of our

detector, and make comparisons with state-of-the-art methods. For

a temporal action detection task, weak supervision refers to the

setting for which only video-level category labels are provided,

while strong supervision refers to that both instance-level action
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Figure 8: Visualization of the detection process. The snippet is excerpted from łvideo_test_0001281ž between 8 and 67 sec-

onds on THUMOS’14. After a certain number of erasing steps, the curve of detection conidence s̃i, j is plotted for the action

łLongJumpž. Under the conidence curve, a series of video frames discovered at the current step is on exhibition. The shaded

areas underneath these curves represents the detected video clips (with s̃i, j > 0.5) up to the given erasing steps.

Table 2: mAP@tIoU on THUMOS’14.

tIoU 0.5 0.4 0.3 0.2 0.1

Strong Supervision

Karaman et al. [21] 0.9 1.4 2.1 3.4 4.6

Wang et al. [45] 8.5 12.1 14.6 17.8 19.2

Heilbron et al. [15] 13.5 15.2 25.7 32.9 36.1

Escorcia et al. [9] 13.9 ÐÐ ÐÐ ÐÐ ÐÐ

Oneata et al. [6] 14.4 20.8 27.0 33.6 36.6

Richard et al. [34] 15.2 23.2 30.0 35.7 39.7

Yeung et al. [56] 17.1 26.4 36.0 44.0 48.9

Yuan et al. [58] 17.8 27.8 36.5 45.2 51.0

Yuan et al. [57] 18.8 26.1 33.6 42.6 51.4

Shou et al. [37] 19.0 28.7 36.3 43.5 47.7

Shou et al. [36] 23.3 29.4 40.1 ÐÐ ÐÐ

Lin et al. [28] 24.6 35.0 43.0 47.8 50.1

Xiong et al. [53] 28.2 39.8 48.7 57.7 64.1

Zhao et al. [60] 29.1 40.8 50.6 56.2 60.3

Weak Supervision

Sun et al. [41] 4.4 5.2 8.5 11.0 12.4

Wang et al. [48] 13.7 21.1 28.2 37.7 44.4

Ours 15.9 22.5 31.1 39.0 45.8

categories and temporal boundary annotations are available. The

results on the two datasets are shown in Table 2 and Table 3. The

performance of our detector is superior to other weakly super-

vised methods. Compared with strongly supervised approaches,

our model still achieves competitive performance, and even outper-

forms several of them.

Table 3: mAP@tIoU on ActivityNet.

tIoU Avg. 0.95 0.75 0.5

Strong Supervision

Xiong et al. [53]
One Stage ÐÐ ÐÐ ÐÐ 9.0

Cascade 24.9 5.0 24.1 41.1

Zhao et al. [60]
SW-SSN 18.2 ÐÐ ÐÐ ÐÐ

TAG-SSN 24.5 ÐÐ ÐÐ ÐÐ

Weak Supervision

Ours 15.6 2.9 14.7 27.3

5 CONCLUSION

In this paper, we address the problem ofweakly supervised temporal

action detection in untrimmed videos. Given only video-level cate-

gory labels, we utilize a series of classiiers to detect discriminative

temporal regions. Speciically, the series of classiiers are built with

step-by-step erasion on snippets with high detection conidence

from the remaining video data. In the test process, we expediently

collect predictions from the one-by-one classiiers. Moreover, we

introduce an FC-CRF for imparting prior knowledge to our detector.

Notwithstanding the prior knowledge is simply based upon tem-

poral coherence, the FC-CRF signiicantly improves the detection

performance. Extensive experiments on two challenging datasets

illustrate that our approach achieves superior performance to state-

of-the-art weakly supervised results, and is also comparable to

many strongly supervised methods.
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