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Abstract
It is vital to learn effective policies that can be
transferred to different domains with dynamics
discrepancies in reinforcement learning (RL). In
this paper, we consider dynamics adaptation set-
tings where there exists dynamics mismatch be-
tween the source domain and the target domain,
and one can get access to sufficient source do-
main data, while can only have limited interac-
tions with the target domain. Existing methods
address this problem by learning domain clas-
sifiers, performing data filtering from a value
discrepancy perspective, etc. Instead, we tackle
this challenge from a decoupled representation
learning perspective. We perform representa-
tion learning only in the target domain and mea-
sure the representation deviations on the transi-
tions from the source domain, which we show
can be a signal of dynamics mismatch. We also
show that representation deviation upper bounds
performance difference of a given policy in the
source domain and target domain, which moti-
vates us to adopt representation deviation as a
reward penalty. The produced representations are
not involved in either policy or value function,
but only serve as a reward penalizer. We conduct
extensive experiments on environments with kine-
matic and morphology mismatch, and the results
show that our method exhibits strong performance
on many tasks. Our code is publicly available at
https://github.com/dmksjfl/PAR.

1. Introduction
Alice is interested in learning cooking. She bought a new
set of cookware recently that is different from the one she

1Tsinghua Shenzhen International Graduate School, Tsinghua
University 2Shanghai Artificial Intelligence Laboratory 3Tencent
IEG 4School of Computer Science, Peking University 5Beijing
Academy of Artificial Intelligence. Correspondence to: Xiu Li
<li.xiu@sz.tsinghua.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

used before. She expertly uses new cookware soon. As this
example conveys, human beings are able to quickly transfer
the learned policies to similar tasks. Such capability is also
expected in reinforcement learning (RL) agents. Unfortu-
nately, RL algorithms are known to require a vast number of
interactions to learn meaningful policies (Silver et al., 2016;
Lyu et al., 2023). A bare fact is that sometimes only limited
interactions with the environment (target domain) are feasi-
ble because it may be expensive and time-consuming for a
large number of interactions in scenarios like robotics (Cut-
ler & How, 2015; Kober et al., 2013), autonomous driving
(Kiran et al., 2020; Osinski et al., 2019), etc. Nevertheless,
we may simultaneously have access to another structurally
similar source domain where the experience is cheaper to
gather, e.g., a simulator. Since the source domain can be
biased, a dynamics mismatch between the two domains may
persist. It then necessitates developing algorithms that have
good performance in the target domain, given the source
domain with some dynamics discrepancies.

Note that there are numerous studies concerning policy adap-
tation, such as system identification (Yu et al., 2017; Clavera
et al., 2018) and domain randomization (Slaoui et al., 2019;
Tobin et al., 2017; Peng et al., 2017). These methods often
rely on demonstrations from the target domain (Kim et al.,
2019), the distributions from which the simulator parame-
ters are sampled, a manipulable simulator (Chebotar et al.,
2018), etc. We lift these requirements and consider learning
policies with sufficient source domain data (either online
or offline) and limited online interactions with the target
domain. This setting is also referred to as off-dynamics RL
(Eysenbach et al., 2021) or online dynamics adaptation (Xu
et al., 2023). Existing methods tackle this problem by learn-
ing domain classifiers (Eysenbach et al., 2021), filtering
source domain data that share similar value estimates with
target domain data (Xu et al., 2023), etc.

In this paper, we study the cross-domain policy adaptation
problem where only transition dynamics between the source
domain and the target domain differ. The state space, action
space, as well as the reward function, are kept unchanged.
Unlike prior works, we address this issue from a repre-
sentation learning perspective. Our motivation is that the
dynamics mismatch between the source domain and the tar-
get domain can be captured by representation deviations of
transitions from the two domains, which is grounded by our
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Figure 1. Illustration of PAR. We train encoders f, g merely with
target domain data and utilize them to modify rewards from the
source domain with measured representation deviations. After-
ward, the downstream SAC algorithm can learn from transitions
from both domains.

theoretical analysis. We further show concrete performance
bounds given either online or offline source domain, where
we observe that representation deviation upper bounds the
performance difference of any given policy between the
source domain and the target domain. Motivated by the
theoretical findings, we deem that representation mismatch
between two domains can be used as a reward penalizer to
fulfill dynamics-aware policy adaptation.

For a practical usage, we propose Policy Adaptation by
Representation mismatch, dubbed PAR algorithm. Our ap-
proach trains a state encoder and a state-action encoder only
in the target domain to capture its latent dynamics structure,
and then leverage the learned encoders to produce represen-
tations upon transitions from the source domain. We eval-
uate deviations between representations of the state-action
pair and the next state, and use the resulting representation
deviations to penalize source domain rewards, as depicted
in Figure 1. Intuitively, the penalty is large if the transition
deviates far from the target domain, and vice versa. In this
way, the agent can benefit more from dynamics-consistent
transitions and de-emphasize others. It is worth noting that
the representation learning is decoupled from policy or value
function training since the representations are not involved
in them. Empirical results in environments with kinematic
and morphology shifts show that our method notably beats
previous strong baselines on many tasks in both online and
offline source domain settings.

2. Related Work
Domain Adaptation in RL. Generalizing or transferring
policies across varied domains remains a critical issue in RL,
where domains may differ in terms of agent embodiment
(Liu et al., 2022b; Zhang et al., 2021c), transition dynamics
(Eysenbach et al., 2021; Viano et al., 2020), observation
space (Gamrian & Goldberg, 2018; Bousmalis et al., 2018;
Ge et al., 2022; Zhang et al., 2021b; Hansen et al., 2021),

etc. We focus on policy adaptation under dynamics dis-
crepancies between the two domains. Prior works mainly
address this issue via system identification (Clavera et al.,
2018; Zhou et al., 2019; Du et al., 2021; Xie et al., 2022), do-
main randomization (Slaoui et al., 2019; Mehta et al., 2019;
Vuong et al., 2019; Jiang et al., 2023), meta-RL (Nagabandi
et al., 2018; Raileanu et al., 2020; Arndt et al., 2019; Wu
et al., 2022), or by leveraging expert demonstrations from
the target domain (Kim et al., 2019; Hejna et al., 2020;
Fickinger et al., 2022; Raychaudhuri et al., 2021). Though
effective, these methods depend on a model of the environ-
ment, expert trajectories gathered in the target domain, or
a proper choice of randomized parameters. In contrast, we
dismiss these requirements and study dynamics adaptation
problem (Xu et al., 2023) where only a small amount of
online interactions with the target domain is allowed, and a
source domain with sufficient data can be accessed. Under
this setting, many approaches have been developed, such as
directly optimizing the parameters of the simulator to cali-
brate the dynamics of the source domain (Farchy et al., 2013;
Zhu et al., 2017; Collins et al., 2020; Chebotar et al., 2018;
Ramos et al., 2019). However, it requires a manipulable sim-
ulator. There are attempts to use some expressive models to
learn the dynamics change (Golemo et al., 2018; Hwangbo
et al., 2019; Xiong et al., 2023), and action transformation
methods that learn dynamics models of the two domains and
utilize them to modify transitions from the source domain
(Hanna et al., 2021; Desai et al., 2020), while it is difficult
to learn accurate dynamics models (Malik et al., 2019; Lyu
et al., 2022b). Another line of research trains domain clas-
sifiers and tries to close the dynamics gap by either reward
modification (Eysenbach et al., 2021; Liu et al., 2022a), or
importance weighting (Niu et al., 2022). A recent work
(Xu et al., 2023) bridges the dynamics gap by selectively
sharing transitions from the source domain that have similar
value estimates as those in the target domain. Unlike these
methods, we capture dynamics discrepancy by measuring
representation mismatch. It is worth noting that in this work
we only consider policy adaptation across domains that have
the same state space and action space. Our method can also
generalize to the setting where target domain has a different
state space or action space by incorporating extra compo-
nents or modules like prior works (Barekatain et al., 2019;
You et al., 2022; Gui et al., 2023).

Representation Learning in RL. Representation learning
is an important research topic in computer vision (Bengio
et al., 2012; Kolesnikov et al., 2019; He et al., 2015). In the
context of RL, representation learning is actively explored
in image-based tasks (Kostrikov et al., 2020; Yarats et al.,
2022; Liu et al., 2021; Cetin et al., 2022), aiming at extract-
ing useful features from information-redundant images by
contrastive learning (Srinivas et al., 2020; Eysenbach et al.,
2022; Stooke et al., 2021; Zhu et al., 2020), MDP homo-
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morphisms (van der Pol et al., 2020; Rezaei-Shoshtari et al.,
2022), bisimulation (Ferns et al., 2011; Zhang et al., 2021a),
self-predictive learning (Schwarzer et al., 2021; Tang et al.,
2022; Kim et al., 2022), etc. Representation learning can
also be found in model-based RL methods that rely on latent
dynamics (Karl et al., 2016; Rafailov et al., 2020; Hafner
et al., 2019; Hansen et al., 2022). In state-based tasks, it
also spans in successor representation (Barreto et al., 2016;
Fujimoto et al., 2021; Machado et al., 2023), learning state-
action representations (Ota et al., 2020; Fujimoto et al.,
2023), action representations (Whitney et al., 2020; Chan-
dak et al., 2019) for improving sample efficiency, etc. We
capture latent dynamics information by learning state-action
representations, but we differ from previous approaches in
that we use them for detecting dynamics mismatch.

3. Preliminaries
We formulate reinforcement learning (RL) problems as a
Markov Decision Process (MDP), which can be specified by
the 5-tupleM = (S,A, P, r, γ), where S is the state space,
A is the action space, P denotes the transition dynamics,
r : S ×A → R is the scalar reward signal, and γ ∈ [0, 1) is
the discount factor. The objective of RL is to find a policy π :
S → ∆(A) that maximize the discounted cumulative return∑∞
t=0 γ

tr(st, at). We consider access to a source domain
Msrc = (S,A, Psrc, r, γ) and a target domain Mtar =
(S,A, Ptar, r, γ) that share the state space and action space,
and only differ in their transition dynamics. We assume the
rewards are bounded, i.e., |r(s, a)| ≤ rmax,∀ s, a.

In the rest of the paper, we specify the transition dynam-
ics in a domain M as PM (e.g., PMsrc

is the transition
dynamics in the source domain). We denote ρπM(s, a) :=
(1− γ)

∑∞
t=0 γ

tPπM,t(s)π(a|s) as the normalized probabil-
ity that a policy π encounters the state action pair (s, a),
and PπM,t(s) is the probability that the policy π encounters
the state s at timestep t in the domainM. The expected
return of a policy π in MDPM can then be simplified as
JM(π) = Es,a∼ρπM [r(s, a)].

Notations: I(X;Y ) denotes the mutual information be-
tween two random variables X,Y . H(X) is the entropy of
the random variable X . ∆ is the probability simplex.

4. Dynamics Adaptation by Representation
Mismatch

In this section, we start by theoretically unpacking the equiv-
alence between the representation mismatch and the dynam-
ics mismatch. We further show the performance bounds of a
policy between the target domain and either online or offline
source domain, where representation mismatch serves as the
lower bound of the performance difference. Empowered by
theoretical results, we leverage the representation mismatch

to penalize source domain data and propose our practical
algorithm for dynamics-aware policy adaptation.

4.1. Theoretical Analysis

Before moving to our theoretical results, we need to impose
the following assumption, which can be generally satisfied
in practice (e.g., deep RL). We defer the detailed discussion
on the rationality of this assumption to Section 6.3.
Assumption 4.1 (One-to-one Representation Mapping). For
any state-action pair (s, a) and its latent representation z,
they construct a one-to-one mapping from the original state-
action joint space S ×A to the latent space Z .

Our first result in Theorem 4.2 establishes a connection be-
tween mutual information and the representation deviation
of transitions from different domains. Due to space limits,
all proofs are deferred to Appendix A.
Theorem 4.2. For any (s, a), denote its representation as z,
and suppose s′src ∼ PMsrc

( · |s, a), s′tar ∼ PMtar
( · |s, a).

Denote h(z; s′src, s
′
tar) = I(z; s′tar) − I(z; s′src), then we

have measuring h(z; s′src, s
′
tar) is equivalent to measuring

the representation deviation DKL(P (z|s′tar)∥P (z|s′src)).

Remark. The defined function h(z; s′src, s
′
tar) measures the

difference between the embedded target domain information
and source domain information in z. This theorem illustrates
that such a difference is equivalent to the KL-divergence
between the distributions of z given source domain state and
target domain state, respectively. Intuitively, h(z; s′src, s

′
tar)

approaches 0 if the distribution of s′src is close to that of
s′tar. If we enforce z to contain only target domain knowl-
edge, h(z; s′src, s

′
tar) can be large if the dynamics mismatch

between data from the two domains is large, incurring a
large DKL(P (z|s′tar)∥P (z|s′src)). Naturally, one may think
of using this representation deviation term as evidence of
dynamics mismatch.

Below, we show that the representation deviation can strictly
reflect the dynamics discrepancy between two domains.
Theorem 4.3. Measuring the representation deviation be-
tween the source domain and the target domain is equivalent
to measuring the dynamics mismatch between two domains.
Formally, we can derive thatDKL (P (z|s′tar)∥P (z|s′src)) =
DKL (P (s

′
tar|z)∥P (s′src|z)) +H(s′tar)−H(s′src).

The above theorem conveys the rationality of detecting dy-
namics shifts with the aid of the representation mismatch.
This is appealing as representations can contain rich informa-
tion and capture hidden features, and learning in the latent
space is effective (Hansen et al., 2022). To see how repre-
sentation mismatch affects the performance of the agent, we
derive a novel performance bound of a policy given online
target domain and online source domain in Theorem 4.4.
Theorem 4.4 (Online performance bound). DenoteMsrc,
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Mtar as the source domain and the target domain, respec-
tively, then the return difference of any policy π between
Msrc andMtar is bounded:

JMtar
(π)− JMsrc

(π) ≥

−
√
2γrmax

(1− γ)2
EρπMsrc

[√
DKL(P (z|s′src)∥P (z|s′tar))

]
︸ ︷︷ ︸

(a): representationmismatch

−
√
2γrmax

(1− γ)2
EρπMsrc

[√
|H(s′src)−H(s′tar)|

]
︸ ︷︷ ︸

(b): state distribution deviation

.

Remark. The above bound indicates that the performance
difference of a policy π in different domains is decided by
the representation mismatch term (a), and the state distribu-
tion deviation term (b). Since both two domains are fixed,
the entropy of their state distributions are constants, and
term (b) is also a constant accordingly. Term (b) character-
izes the inherent performance difference of a policy in two
domains and vanishes if the two domains are identical.

Moreover, if the source domain is offline (i.e., one can only
have access to a static offline source domain dataset), we
can derive a similar bound as shown below.

Theorem 4.5 (Offline performance bound). Denote the
empirical policy distribution in the offline dataset D from
source domainMsrc as πD :=

∑
D 1(s,a)∑
D 1(s) , then the return

difference of any policy π between the source domainMsrc

and the target domainMtar is bounded:

JMtar(π)− JMsrc(π) ≥

− 4rmax

(1− γ)2
EρπD

Msrc
,PMsrc

[DTV(πD||π)]︸ ︷︷ ︸
(a): policy deviation

−
√
2γrmax

(1− γ)2
EρπD

Msrc

[√
DKL(P (z|s′src)∥P (z|s′tar))

]
︸ ︷︷ ︸

(b): representationmismatch

−
√
2γrmax

(1− γ)2
EρπD

Msrc

[√
|H(s′src)−H(s′tar)|

]
︸ ︷︷ ︸

(c): state distribution deviation

.

Remark. This theorem also explicates the importance of the
representation mismatch term (b) as a lower bound, similar
to Theorem 4.4, but it additionally highlights the role of the
policy deviation term (a). It is evident that controlling the
policy deviation term counts with an offline source domain.

Theorem 4.4 and 4.5 motivate us to use the representation
mismatch term as a reward penalty to encourage dynamics-
consistent transitions, because it turns out that the core factor
that affects the bound either with an online or offline source
domain is the representation mismatch term.

4.2. Practical Algorithm

To acquire representations of the transitions, we train a state
encoder fψ(s) parameterized by ψ to produce z1, the rep-
resentation of the state s, along with a state-action encoder
gξ(z, a) parameterized by ξ that receives the state represen-
tation z1 and action as inputs and outputs state-action rep-
resentation z2. By letting z2 be close to the representation
of the next state, we realize the latent dynamics consistency
(Hansen et al., 2022; Ye et al., 2021). The objective function
for learning these encoders gives:

L(ψ, ξ) = E(s,a,s′)∼D
[
(gξ(fψ(s), a)− SG(fψ(s

′)))2
]
,

(1)
where D is the replay buffer, and SG denotes stop gradient
operator. Similar objectives are adopted in prior works (Ota
et al., 2020; Fujimoto et al., 2023). A central difference
is, that we only use the representations for measuring rep-
resentation mismatch, instead of involving them in policy
or value function training. One can also utilize a distinct
objective, as long as it can embed the latent dynamics infor-
mation (see Section 6). It is worth noting that both f and g
are deterministic to fulfill Assumption 4.1.

Given insights from Theorem 4.2, we deem that the repre-
sentations ought to embed more information of the target
domain, and de-emphasize the source domain knowledge,
such that the representation deviations can be a better proxy
of dynamics shifts. This prompts us to train the state encoder
and the state-action encoder only in the target domain, and
evaluate the representation deviations upon samples from
the source domain. We then penalize the source domain re-
wards with the calculated deviations, i.e., for any transition
(ssrc, asrc, rsrc, s

′
src) from the source domain, we modify its

reward to

r̂src = rsrc − β × [gξ(fψ(ssrc), asrc)− fψ(s′src)]
2
, (2)

where β ∈ R is a hyperparameter. This penalty generally
captures the representation mismatch between the source
domain and the target domain. gξ(fψ(ssrc), asrc) represents
the state-action representation in the target domain since
these domains share state space and action space, and f, g
only encode target domain information. It approaches the
representation of s′tar that is incurred by (ssrc, asrc) in the
target domain. fψ(s′src), instead, denotes the representation
of s′src from the source domain. A larger penalty will be
allocated if the source domain data deviates too much from
the dynamics of the target domain, and vice versa. Conse-
quently, the agent can focus more on dynamics-consistent
transitions and achieve better performance. Hence, such a
penalty matches our theoretical results.

Formally, we introduce our novel method for cross-domain
policy adaptation, Policy Adaptation by Representation Mis-
match, tagged PAR algorithm. We use SAC (Haarnoja et al.,
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2018) as the base algorithm, and aim at training value func-
tions (a.k.a., critics) Qθ1(s, a), Qθ2(s, a) parameterized by
θ1, θ2, and policy (a.k.a., actor) πϕ(s) parameterized by ϕ.
Denote Dsrc, Dtar as the replay buffers of the source do-
main and the target domain, and let the rewards in Dsrc be
corrected as r̂src, then the objective function for training the
value functions gives:

Lcritic = E(s,a,r,s′)∼Dsrc∪Dtar

[
(Qθi(s, a)− y)2

]
, (3)

where i ∈ {1, 2} and y is the target value, which gives

y = r + γ

[
min
i=1,2

Qθ′i(s
′, a′)− α log πϕ(a

′|s′)
]
, (4)

where θ′i, i ∈ {1, 2} are the parameters of the target net-
works, α ∈ R+, and a′ ∼ πϕ(·|s′). The way PAR uses
to update its policy depends on the condition of the source
domain, e.g., it can be either online or offline. We consider
both conditions and discuss them below.

Online PAR. If the source domain is online, then the policy
objective function gives:

Lon
actor = Es∼Dsrc∪Dtar

a∼πϕ(·|s)

[
min
i=1,2

Qθi(s, a)− α log πϕ(·|s)
]
.

(5)

Offline PAR. Given an offline source domain, the deviation
between the learned policy and the source domain behav-
ior policy πDsrc

ought to be considered based on Theorem
4.5. We then incorporate a behavior cloning term into the
objective function of the policy, similar to Fujimoto & Gu
(2021). This term injects conservatism into policy learning
on a fixed dataset and is necessary to mitigate the extrap-
olation error (Fujimoto et al., 2019), a challenge that is
widely studied in offline RL (Levine et al., 2020; Kumar
et al., 2020; Lyu et al., 2022c;a; Kostrikov et al., 2022). The
policy objective function then yields:

Loff
actor = E(s,a)∼Dsrc

ã∼πϕ(·|s)

[
−(a− ã)2

]
+ λ× Lon

actor, (6)

where λ = ν/ 1
N

∑
(sj,aj)

mini=1,2Qθi
(sj ,aj) is the normaliza-

tion term that balances behavior cloning and maximizing
the value function, ν ∈ R+ is a hyperparameter, Lon

actor is
the policy objective of online PAR in Equation 5. The be-
havior cloning term ensures that the learned policy is close
to the data-collecting policy of the source domain dataset.
We summarize in Algorithm 1 the abstracted pseudocode of
PAR, and defer the full pseudocodes to Appendix C.

5. Experiments
In this section, we examine the effectiveness of our proposed
method by conducting experiments on environments with
kinematic and morphology discrepancies. We also exten-
sively investigate the performance of our method under the

Algorithm 1 PAR (Abstracted Version)
Input: Source domainMsrc, target domainMtar, target
domain interaction interval F , batch size N

1: Initialize policy πϕ, value functions {Qθi}i=1,2 and tar-
get networks {Qθ′i}i=1,2, replay buffers {Dsrc, Dtar}

2: for i = 1, 2, ... do
3: (online) Collect (ssrc, asrc, rsrc, s′src) in Msrc and

store it, Dsrc ← Dsrc ∪ {(ssrc, asrc, rsrc, s′src)}
4: if i% F == 0 then
5: Interact withMtar and get (star, atar, rtar, s′tar).

Dtar ← Dtar ∪ {(star, atar, rtar, s′tar)}
6: end if
7: Sample N transitions from Dtar

8: Train encoders in the target domain via Equation 1
9: Sample N transitions from Dsrc

10: Modify source domain rewards with Equation 2
11: Update critics by minimizing Equation 3
12: (online) Update actor by maximizing Equation 5
13: (offline) Update actor by maximizing Equation 6
14: Update target networks
15: end for

offline source domain and different qualities of the offline
datasets. Moreover, we empirically analyze the influence of
the important hyperparameters in PAR.

5.1. Results with Online Source Domain

For the empirical evaluation of policy adaptation capabili-
ties, we use four environments (halfcheetah, hopper, walker,
ant) from OpenAI Gym (Brockman et al., 2016) as source
domains and modify their dynamics following (Xu et al.,
2023) to serve as target domains. The modifications include
kinematic and morphology shifts, where we simulate broken
joints of the robot by limiting the rotation angle of its joints
(i.e., kinematic shifts), and we clip the size of some limbs
of the simulated robot to realize morphology shifts. Please
see details of the environment setting in Appendix D.1.

We compare PAR against the following baselines: SAC-tar
(Haarnoja et al., 2018), which trains the SAC agent merely
in the target domain for 105 environmental steps; DARC
(Eysenbach et al., 2021), which trains domain classifiers
to estimate the dynamics discrepancy and leverage it to
correct source domain rewards; DARC-weight, a variant
of DARC that adopts the dynamics discrepancy term as
importance sampling weights when updating critics; VGDF
(Xu et al., 2023), a recent state-of-the-art method that filters
transitions in the source domain that share similar value
estimates as those in the target domain; SAC-tune, which
trains the SAC agent in the source domain for 1M steps and
fine-tunes it in the target domain with 105 transitions. For
online experiments, we allow all algorithms to interact 1M
environmental steps with the source domain, but only 105
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Figure 2. Adaptation performance comparison when the source domain is online. The curves depict the test performance of each
algorithm in the target domain under kinematic shifts (top) and morphology shifts (bottom). The modification to the environment is
specified in the parentheses of the task name. The solid lines are the average returns over 5 different random seeds and the shaded region
captures the standard deviation. The dashed line of SAC-tune denotes its final performance after fine-tuning 105 steps.

steps in the target domain (i.e., the target domain interaction
interval F = 10). All algorithms are run with five random
seeds. We defer implementation details to Appendix D.2.

We summarize the comparison results in Figure 2. Note that
the evaluated environments are quite challenging, and base-
lines like DARC struggle for a good performance. Based
on the curves, PAR outperforms SAC-tar on all of the tasks,
indicating that our method successfully boosts the perfor-
mance of the agent in the target domain by extracting useful
knowledge from sufficient source domain data. Notably,
PAR achieves the best performance on 6 out of 8 tasks, of-
ten surpassing baselines by a large margin. On the rest of the
two tasks, PAR is able to achieve competitive performance
against VGDF. PAR achieves 2x sample efficiency com-
pared to the best baseline method on tasks like halfcheetah
(no thighs), ant (short feet), etc. Furthermore, PAR beats
the fine-tuning method SAC-tune on 7 out of 8 tasks. These
altogether illustrate the advantages of our method.

5.2. Evaluations under Offline Source Domain

There exist some circumstances where no real-time inter-
action with the source domain is available, but we have a
previously gathered source domain dataset. We then investi-
gate how our method behaves under this setting, and how
the quality of the dataset affects the performance. To that
end, we adopt datasets of the four environments (halfchee-
tah, hopper, walker, ant) from D4RL (Fu et al., 2020) “-v2”
datasets with three quality levels (medium, medium-replay,
medium-expert). This induces a total of 24 tasks.

We consider four baselines for comparison: CQL-0 (Kumar

et al., 2020), which trains a CQL agent solely in the source
offline dataset and then directly deploys the learned policy
in the target domain in a zero-shot manner; CQL+SAC,
which updates the offline source domain data with the CQL
loss function, while the online target domain data with the
SAC loss; H2O (Niu et al., 2022), which trains domain
classifiers to estimate the dynamics gap and use it as an
importance sampling weight for the bellman error of data
from the source domain dataset; VGDF+BC (Xu et al.,
2023), which incorporates an additional behavior cloning
term in vanilla VGDF, similar to PAR. All algorithms have
a limited budget of 105 interactions with the target domain.
The implementation details can be found in Appendix D.2.

We present the comparison results in Table 1. We observe
that PAR also achieves superior performance given offline
source domain datasets, surpassing baseline methods on 17
out of 24 tasks. It is worth mentioning that PAR is the only
method that obtains meaningful performance on halfcheetah
(no thighs) with medium-expert dataset, which is approxi-
mately 4x the performance of the strongest baseline. PAR
is also the only method that can generally gain better perfor-
mance on many tasks with higher quality datasets, e.g., de-
spite that PAR has unsatisfying performance on hopper (big
head) under medium-level source domain dataset, its per-
formance given the medium-expert source domain dataset
is good. Nevertheless, methods like VGDF and H2O have
worse performance given medium-expert datasets compared
to medium-replay or medium datasets. These collectively
show the superiority of PAR and shed light on capturing rep-
resentation mismatch for cross-domain policy adaptation.
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Table 1. Performance comparison when the source domain is offline, i.e., only static source domain datasets are available. We report
the mean return in conjunction with standard deviation in the target domain under different dataset qualities of the source domain data
(medium, medium-replay, medium-expert). The results are averaged over 5 varied random seeds. We bold and highlight the best cell.

Dataset Type Task Name CQL-0 CQL+SAC H2O VGDF+BC PAR (ours)

medium halfcheetah (broken back thigh) 1128±156 3967±204 5450±194 4834±250 5686±603
medium halfcheetah (no thighs) 361±29 1184±211 2863±209 3910±160 5768±117
medium hopper (broken joints) 155±19 498±73 2467±323 2785±75 2825±112
medium hopper (big head) 399±5 496±53 1451±480 3060±60 1450±143
medium walker (broken right foot) 1453±412 1877±1040 3309±418 3000±388 3683±211
medium walker (no right thigh) 975±131 1262±363 2225±546 3293±306 2899±841
medium ant (broken hips) 1230±99 -1814±431 2704±253 1713±366 3324±72
medium ant (short feet) 1839±137 -807±255 3892±85 3120±469 4886±97

medium-replay halfcheetah (broken back thigh) 655±226 3868±295 5103±35 5398±360 5227±445
medium-replay halfcheetah (no thighs) 398±63 575±619 3225±66 4271±162 5161±46
medium-replay hopper (broken joints) 1018±6 686±60 2325±193 2242±1057 2376±777
medium-replay hopper (big head) 365±7 556±222 1854±647 566±90 1336±419
medium-replay walker (broken right foot) 156±175 1018±22 3536±431 2901±1101 3128±1084
medium-replay walker (no right thigh) 337±189 1465±696 4254±207 2057±921 1249±706
medium-replay ant (broken hips) 882±28 -1609±425 2497±190 2437±286 2977±186
medium-replay ant (short feet) 1294±191 -1369±476 3782±382 4493±82 4791±102

medium-expert halfcheetah (broken back thigh) 843±510 4283±180 4100±211 3580±1801 3741±378
medium-expert halfcheetah (no thighs) 322±81 1669±439 1938±473 2740±297 10517±476
medium-expert hopper (broken joints) 458±441 1147±595 2587±252 2144±938 2838±339
medium-expert hopper (big head) 460±50 547±96 1156±574 2155±1182 2676±585
medium-expert walker (broken right foot) 813±459 2431±782 2254±710 1540±926 4211±196
medium-expert walker (no right thigh) 698±194 1547±346 2835±826 2047±1100 4006±1070
medium-expert ant (broken hips) 321±373 304±1458 2178±799 1868±321 3113±501
medium-expert ant (short feet) 1816±224 -812±105 3511±441 1821±516 4902±34

5.3. Parameter Study

Now we investigate the influence of two critical hyperpa-
rameters in PAR, reward penalty coefficient β, and target
domain interaction interval F . Considering the page limit,
please check more experimental results in Appendix E.

Penalty coefficient β. β controls the scale of the measured
representation mismatch. Intuitively, the agent will struggle
for good performance if β is too large, and may fail to dis-
tinguish source domain samples with inconsistent dynamics
if β is too small. To examine its impact, we conduct experi-
ments on two tasks with online source domains, halfcheetah
(broken back thigh) and walker (no right thigh). We evaluate
PAR across β ∈ {0, 0.1, 0.5, 1.0, 2.0}, and show the results
in Figure 3(a). We find that setting β = 0 (i.e., no repre-
sentation mismatch penalty) usually incurs a worse final
performance, especially on the halfcheetah task, verifying
the necessity of the reward modification term. Figure 3(a)
also illustrates that the optimal β can be task-dependent. We
believe this is because different tasks have distinct inherent
structures like rewards and state spaces. PAR exhibits some
robustness to β, despite that employing a large β may incur
a performance drop on some tasks, e.g., on walker task.

Target domain interaction interval F . F decides how
frequently the agent interacts with the target domain. Fol-
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Figure 3. Parameter study of (a) reward penalty coefficient β,
(b) target domain interaction interval F . Results are averaged
over 5 seeds and the shaded region denotes the standard deviation.

lowing Section 5.1, only 105 interactions with the target
domain are permitted. We employ F ∈ {2, 5, 10, 20}, and
summarize the results in Figure 3(b), which show that PAR
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Figure 4. Runtime comparison of different methods.

generally benefits from more source domain data incurred
by a larger F , indicating that PAR can exploit dynamics-
consistent transitions and realize efficient policy adaptation
to another domain. We simply use F = 10 by default.

5.4. Runtime Comparison

Furthermore, we compare the runtime of PAR against base-
lines. All methods are run on the halfcheetah (broken back
thigh) task on a single GPU. The results in Figure 4 show
that PAR is highly efficient in runtime thanks to training in
the latent space with one state encoder and one state-action
encoder. DARC and its variant have slightly larger training
costs. VGDF consumes the most training time because it
trains an ensemble of dynamics models in the original state
space following model-based RL (Janner et al., 2019).

6. Discussions
In this section, we provide discussions on whether the perfor-
mance of PAR can be largely affected if we use another rep-
resentation learning objective, and why PAR beats DARC.
We also explain the validity of the assumption. We believe
these make a better understanding of our method.

6.1. PAR with a Different Objective

We investigate how PAR behaves with a varying representa-
tion learning objective against Equation 1. Such an objective
needs to learn the latent dynamics information as well. To
that end, we consider the following objective where g now
receives true state s (instead of its representation) and action
a as inputs, and no stop gradient operator is required:

L′(ψ, ξ) = E(s,a,s′)∼D
[
(gξ(s, a)− fψ(s′))2

]
. (7)

Importantly, both f and g are optimized with this objective.
Equation 7 also guarantees latent dynamics consistency. We
tag this variant as PAR-B. To see how PAR-B competes
against vanilla PAR, we conduct experiments on four tasks
with kinematic and morphology mismatch. We report their
final mean performance in the target domain in Figure 5,

where only marginal return difference is observed between
PAR and PAR-B, implying that another objective can also
be valid as long as it embeds latent dynamics information.
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Figure 5. Performance comparison between PAR and PAR-B.

6.2. Why PAR Outperforms DARC?

It is vital to address why PAR significantly outperforms
DARC on numerous online tasks given that DARC also
corrects source domain rewards (check Figure 2). We stress
that DARC learns domain classifiers by leveraging both
source domain data and target domain data and estimates
the dynamics gap, which can be interpreted as how likely
the measured source domain transition belongs to the target
domain. However, if the transition deviates far from the
target domain, the estimated gap log

PMtar (s
′|s,a)

PMsrc (s
′|s,a) can be

large and negatively affect the policy learning, which is
similar in spirit to DARC’s overly pessimistic issue that
is criticized by Xu et al. (2023). PAR, instead, captures
representation mismatch by training encoders only with
target domain data and evaluating representation deviations
upon source domain data. We claim that PAR produces
more appropriate reward penalties.

To verify our claim, we log the reward penalties calculated
by DARC and PAR, and summarize the results in Figure 6.
The reward penalty of PAR is large at first, while it decreases
with more interactions, meaning that PAR uncovers more
dynamics-consistent samples from the source domain. Note
that the penalty by PAR tends to converge to a small number
(not 0). However, the penalty from DARC is inconsistent
on two tasks, i.e., it approaches 0 on halfcheetah task while
becomes large on walker task. The results clearly indicate
that capturing representation mismatch is a better choice.

6.3. On the Rationality of the Assumption

In Assumption 4.1, we assume a one-to-one mapping be-
tween S ×A and Z . One-to-one mapping mathematically
indicates that the mapping is injective (not necessarily sur-
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Figure 6. Reward penalty comparison between DARC and PAR.
We record the average reward penalty across 5 seeds when training
each method. The shaded region denotes the standard deviation.

jective). That is, we only require there exists one unique z
in the latent space corresponding to the specific (s, a) tuple.
To satisfy this assumption, we first employ a deterministic
state encoder f and state-action encoder g for representation
learning, i.e., f constructs a deterministic mapping from S
to Z and g is a deterministic mapping from S × A to Z .
It remains to decide whether the mapped representation is
unique. Note that it is the user’s choice of what representa-
tion learning approach and which latent representation space
to use. One can surely choose a representation method and
representation space to let the assumption hold. With our
adopted representation learning formula in Equation 1, it
is less likely that two distinct (s, a) tuples are mapped into
the same latent vector because that indicates they share the
same dynamics transition information (since Equation 1 re-
alizes latent dynamics consistency). To further mitigate this
concern, the dimension of the state-action representation in
PAR is much larger (it is set to be 256 as shown in Table 2
in the appendix) than the input state vector and action vector.
We believe these explain the rationality of the assumption.

7. Conclusion and Limitations
In this paper, we study how to effectively adapt policies to
another domain with dynamics discrepancy. We propose a
novel algorithm, Policy Adaptation by Representation Mis-
match (PAR), which captures the representation mismatch
between the source domain and the target domain, and em-
ploys the resulting representation deviation to compensate
source domain rewards. Our method is motivated and sup-
ported by rigorous theoretical analysis. Experimental re-
sults demonstrate that PAR achieves strong performance
and outperforms recent strong baselines under scenarios
like kinematic shifts and morphology mismatch, regardless
of whether the source domain is online or offline.

Despite the effectiveness of our method, we have to admit
that there exist some limitations of our work. First, one
may need to decide the best β manually in practice. Second,
PAR behaves less satisfyingly given some (not all of them)
medium-replay source domain datasets, suggesting that it
may be hard for PAR to handle datasets with large diversities.

For future work, it is interesting to design mechanisms to
adaptively tune β, and enable PAR to consistently acquire a
good performance provided datasets with large diversities.
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A. Missing Proofs
In this section, we formally present all the missing proofs from the main text. For better readability, we restate theorems in
the appendix. We also need some lemmas, which can be found in Appendix B.

A.1. Proof of Theorem 4.2

Theorem A.1. For any (s, a), denote its representation as z, and suppose s′src ∼ PMsrc
( · |s, a), s′tar ∼ PMtar

( · |s, a).
Denote h(z; s′src, s

′
tar) = I(z; s′tar) − I(z; s′src), then we have measuring h(z; s′src, s

′
tar) is equivalent to measuring the

representation deviation DKL(P (z|s′tar)∥P (z|s′src)).

Proof. By the definition of mutual information, we have

h(z; s′src, s
′
tar) = I(z; s′tar)− I(z; s′src)

=

∫
Z

∫
S
P (z, s′tar) log

P (z, s′tar)

P (z)P (s′tar)
dzds′tar −

∫
Z

∫
S
P (z, s′src) log

P (z, s′src)

P (z)P (s′src)
dzds′src

=

∫
Z

∫
S
P (z, s′tar) log

P (z|s′tar)
P (z)

dzds′tar −
∫
Z

∫
S
P (z, s′src) log

P (z|s′src)
P (z)

dzds′src

=

∫
Z

∫
S

∫
S
P (z, s′tar, s

′
src) log

P (z|s′tar)
P (z)

dzds′tards
′
src −

∫
Z

∫
S

∫
S
P (z, s′src, s

′
tar) log

P (z|s′src)
P (z)

dzds′srcds
′
tar

=

∫
Z

∫
S

∫
S
P (z, s′tar, s

′
src) log

P (z|s′tar)
P (z|s′src)

dzds′tards
′
src

= DKL (P (z|s′tar)∥P (z|s′src)) . (By the definition of Kullback–Leibler divergence)

We then can conclude that measuring the defined function h(z; s′src, s
′
tar) is equivalent to measuring the KL-divergence

between P (z|s′tar) and P (z|s′src), which is the deviation of representations given the source domain state and target domain
state, respectively. Note that the definition of the KL-divergence already involves expectations over s′src and s′tar. While one
can also write Es′src,s′tar [DKL (P (z|s′tar)∥P (z|s′src))] and it should not affect the result.

A.2. Proof of Theorem 4.3

Theorem A.2. Measuring the representation deviation between the source domain and the target domain is equivalent
to measuring the dynamics mismatch between two domains. Formally, we can derive that DKL (P (z|s′tar)∥P (z|s′src)) =
DKL (P (s

′
tar|z)∥P (s′src|z)) +H(s′tar)−H(s′src).

Proof. We would like to establish a connection between the representation deviations in the two domains and the dynamics
discrepancies between the two domains. We achieve this by rewriting the defined function h(z; s′src, s

′
tar) as follows,

h(z; s′src, s
′
tar) = I(z; s′tar)− I(z; s′src)

=

∫
Z

∫
S
P (z, s′tar) log

P (z, s′tar)

P (z)P (s′tar)
dzds′tar −

∫
Z

∫
S
P (z, s′src) log

P (z, s′src)

P (z)P (s′src)
dzds′src

=

∫
Z

∫
S
P (z, s′tar) log

P (s′tar|z)
P (s′tar)

dzds′tar −
∫
Z

∫
S
P (z, s′src) log

P (s′src|z)
P (s′src)

dzds′src

=

∫
Z

∫
S

∫
S
P (z, s′tar, s

′
src) log

P (s′tar|z)
P (s′tar)

dzds′tards
′
src −

∫
Z

∫
S

∫
S
P (z, s′src, s

′
tar) log

P (s′src|z)
P (s′src)

dzds′srcds
′
tar

=

∫
Z

∫
S

∫
S
P (z, s′tar, s

′
src) log

P (s′tar|z)
P (s′src|z)

dzds′tards
′
src −

∫
S
P (s′tar) logP (s

′
tar)ds

′
tar

+

∫
S
P (s′src) logP (s

′
src)ds

′
src

= DKL (P (s
′
tar|z)∥P (s′src|z)) +H(s′tar)−H(s′src).

One can see that the defined function is also connected to the dynamics discrepancy term DKL(P (s
′
tar)|z)∥P (s′src|z). It

also correlates to two entropy terms. Nevertheless, we observe that the source domain and the target domain are specified
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and fixed, and their state distributions are also fixed, indicating that the entropy terms are constants. Then by using the
conclusion from Theorem 4.2, we have

DKL (P (z|s′tar)∥P (z|s′src))︸ ︷︷ ︸
representation deviation

= DKL (P (s
′
tar|z)∥P (s′src|z))︸ ︷︷ ︸

dynamics deviation

+H(s′tar)−H(s′src)︸ ︷︷ ︸
constants

. (8)

Hence, we conclude that measuring representation deviations between two domains is equivalent to measuring the dynamics
mismatch.

A.3. Proof of Theorem 4.4

Theorem A.3 (Online performance bound). DenoteMsrc,Mtar as the source domain and the target domain, respectively,
then the return difference of any policy π betweenMsrc andMtar is bounded:

JMtar
(π)− JMsrc

(π) ≥ −
√
2γrmax

(1− γ)2
EρπMsrc

[√
DKL(P (z|s′src)∥P (z|s′tar))

]
︸ ︷︷ ︸

(a):representationmismatch

−
√
2γrmax

(1− γ)2
EρπMsrc

[√
|H(s′src)−H(s′tar)|

]
︸ ︷︷ ︸

(b):state distribution deviation

.

Proof. To show this theorem, we reiterate the Assumption 4.1 we made in the main text, i.e., the state-action pair (s, a) and its
corresponding representation z are a one-to-one mapping from the original space S ×A to the latent space Z . This indicates
that we could construct a pseudo probability distribution given the representation z that is the same as the transition dynamics
probability in the system, i.e., P (s′src|z) = P (s′src|s, a) = PMsrc

(·|s, a), P (s′tar|z) = P (s′tar|s, a) = PMtar
(·|s, a),∀ s, a.

Recall that the value function V (s) estimates the expected return given the state s, and state-action value func-
tion Q(s, a) estimates the expected return given the state s and action a. Since the rewards are bounded, we have
|V (s)| ≤ rmax

1− γ
, |Q(s, a)| ≤ rmax

1− γ
,∀ s, a. We denote value function under policy π and MDPM as V πM(s), QπM(s, a),

respectively.

By using Lemma B.1, we have

JMsrc
(π)− JMtar

(π) =
γ

1− γ
EρπMsrc

(s,a)

[∫
s′
PMsrc

(s′|s, a)V πMtar
(s′)ds′ −

∫
s′
PMtar

(s′|s, a)V πMtar
(s′)ds′

]
=

γ

1− γ
EρπMsrc

(s,a)

[∫
s′
(PMsrc

(s′|s, a)− PMtar
(s′|s, a))V πMtar

(s′)ds′
]

≤ γ

1− γ
EρπMsrc

(s,a)

∣∣∣∣∫
s′
(PMsrc(s

′|s, a)− PMtar(s
′|s, a))V πMtar

(s′)ds′
∣∣∣∣

≤ γ

1− γ
EρπMsrc

(s,a)

[∫
s′
|PMsrc

(s′|s, a)− PMtar
(s′|s, a)| ×

∣∣V πMtar
(s′)

∣∣ ds′]
≤ γrmax

(1− γ)2
EρπMsrc

(s,a)

[∫
s′
|PMsrc

(s′|s, a)− PMtar
(s′|s, a)| ds′

]
=

2γrmax

(1− γ)2
EρπMsrc

(s,a) [DTV (PMsrc(s
′|s, a)∥PMtar(s

′|s, a))]

=
2γrmax

(1− γ)2
EρπMsrc

(s,a) [DTV (P (s′src|z)∥P (s′tar|z))]

≤ 2γrmax

(1− γ)2
EρπMsrc

(s,a)

[√
1

2
DKL (P (s′src|z)∥P (s′tar|z))

]
(i)

≤
√
2γrmax

(1− γ)2
EρπMsrc

(s,a)

[√
DKL (P (z|s′src)∥P (z|s′tar))

]
+

√
2γrmax

(1− γ)2
EρπMsrc

(s,a)

[√
|H(s′src)−H(s′tar)

]
,

where DTV(p, q) denotes the total variation distance between two distribution p and q, the inequality (i) is due to the
Pinsker’s inequality (Csiszár & Körner, 2011), and the last step is by using Equation 8 and the triangle inequality. Then we
conclude the proof.
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A.4. Proof of Theorem 4.5

Theorem A.4 (Offline performance bound). Denote the empirical policy distribution in the offline dataset D from source
domainMsrc as πD :=

∑
D 1(s,a)∑
D 1(s) , then the return difference of any policy π between the source domainMsrc and the

target domainMtar is bounded:

JMtar(π)− JMsrc(π) ≥ −
4rmax

(1− γ)2
EρπD

Msrc
,PMsrc

[DTV(πD||π)]︸ ︷︷ ︸
(a):policy deviation

−
√
2γrmax

(1− γ)2
EρπD

Msrc

[√
DKL(P (z|s′src)∥P (z|s′tar))

]
︸ ︷︷ ︸

(b):representationmismatch

−
√
2γrmax

(1− γ)2
EρπD

Msrc

[√
|H(s′src)−H(s′tar)|

]
︸ ︷︷ ︸

(c):state distribution deviation

.

Proof. Since it is infeasible to directly interact with the source domain, and we have the empirical policy distribution πD in
the offline dataset, we bound the performance difference by involving the term JMsrc

(πD) We have

JMtar
(π)− JMsrc

(π) = (JMtar
(π)− JMsrc

(πD))︸ ︷︷ ︸
(a)

+(JMsrc
(πD)− JMsrc

(π))︸ ︷︷ ︸
(b)

. (9)

The term (a) depicts the performance of the learned policy in the target domain against the performance of the data-collecting
policy in the offline dataset, and the term (b) measures the performance deviation between the learned policy and the
behavior policy in the source domain. We first bound term (b). By using Lemma B.3, we have

JMsrc
(πD)− JMsrc

(π) =
1

1− γ
EρπD

Msrc
(s,a),s′∼PMsrc (·|s,a)

[
Ea′∼πD

[
QπMsrc

(s′, a′)
]
− Ea′∼π

[
QπMsrc

(s′, a′)
]]

≥ − 1

1− γ
EρπD

Msrc
(s,a),s′∼PMsrc (·|s,a)

∣∣Ea′∼πD

[
QπMsrc

(s′, a′)
]
− Ea′∼π

[
QπMsrc

(s′, a′)
]∣∣

≥ − 1

1− γ
EρπD

Msrc
(s,a),s′∼PMsrc (·|s,a)

∣∣∣∣∣∑
a′∈A

(πD(a
′|s′)− π(a′|s′))QπMsrc

(s′, a′)

∣∣∣∣∣
≥ − rmax

(1− γ)2
EρπD

Msrc
(s,a),s′∼PMsrc (·|s,a)

∣∣∣∣∣∑
a′∈A

(πD(a
′|s′)− π(a′|s′))

∣∣∣∣∣
= − 2rmax

(1− γ)2
EρπD

Msrc
(s,a),s′∼PMsrc (·|s,a)

[DTV(πD(·|s′)∥π(·|s′)] .

It remains to bound term (a). By using Lemma B.2, we have

JMtar
(π)− JMsrc

(πD) = −
1

1− γ
EρπD

Msrc
(s,a)

[
Es′src∼PMsrc ,a

′∼πD
[QπMtar

(s′src, a
′)]− Es′tar∼PMtar ,a

′∼π[Q
π
Mtar

(s′tar, a
′)]
]

= − 1

1− γ
EρπD

Msrc
(s,a)

(Es′src∼PMsrc ,a
′∼πD

[QπMtar
(s′src, a

′)]− Es′src∼PMsrc ,a
′∼π[Q

π
Mtar

(s′src, a
′)])︸ ︷︷ ︸

(c)

+(Es′src∼PMsrc ,a
′∼π[Q

π
Mtar

(s′src, a
′)]− Es′tar∼PMtar ,a

′∼π[Q
π
Mtar

(s′tar, a
′)])︸ ︷︷ ︸

(d)

 .
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We bound term (c) as follows:

(c) = Es′src∼PMsrc

[∑
a′∈A

(πD(a
′|s′src)− π(a′|s′src))QπMtar

(s′src, a
′)

]

≤ Es′src∼PMsrc

[∑
a′∈A

|πD(a′|s′src)− π(a′|s′src)| × |QπMtar
(s′src, a

′)|

]

≤ 2rmax

1− γ
Es′∼PMsrc

[DTV(πD(·|s′)∥π(·|s′)] .

Finally, we bound term (d).

(d) = Es′∼PMsrc ,a
′∼π[Q

π
Mtar

(s′, a′)]− Es′∼PMtar ,a
′∼π[Q

π
Mtar

(s′, a′)]

= Ea′∼π
[∫

S
(PMsrc

(s′|s, a)− PMtar
(s′|s, a))QπMtar

(s′, a′)ds′
]

≤ Ea′∼π
[∫

S
|PMsrc(s

′|s, a)− PMtar(s
′|s, a)| × |QπMtar

(s′, a′)|ds′
]

≤ rmax

1− γ

[∫
S
|PMsrc

(s′|s, a)− PMtar
(s′|s, a)|ds′

]
=

2rmax

1− γ
[DTV(PMsrc

(·|s, a)∥PMtar
(·|s, a))]

Then, we get the bound for term (a):

JMtar(π)− JMsrc(πD) ≥ −
2rmax

(1− γ)2
EρπD

Msrc
(s,a),s′∼PMsrc

[DTV(πD(·|s′)∥π(·|s′)]

− 2rmax

(1− γ)2
EρπD

Msrc
(s,a) [DTV(PMsrc(·|s, a)∥PMtar(·|s, a))] .

Combining the bounds for term (a) and term (b), and we have

JMtar
(π)− JMsrc

(π) ≥ − 4rmax

(1− γ)2
EρπD

Msrc
(s,a),s′∼PMsrc

[DTV(πD(·|s′)∥π(·|s′)]

− 2rmax

(1− γ)2
EρπD

Msrc
(s,a) [DTV(PMsrc

(·|s, a)∥PMtar
(·|s, a))] .

Following the same procedure in the proof of Theorem 4.4 in Appendix A.3, we convert the dynamics discrepancy term into
the representation mismatch term, incurring the following bounds:

JMtar
(π)− JMsrc

(π) ≥ − 4rmax

(1− γ)2
EρπD

Msrc
(s,a),s′∼PMsrc

[DTV(πD(·|s′)∥π(·|s′)]

−
√
2rmax

(1− γ)2
EρπD

Msrc
(s,a)

[√
DKL(PMsrc

(·|s, a)∥PMtar
(·|s, a))

]
−
√
2γrmax

(1− γ)2
EρπD

Msrc
(s,a)

[√
|H(s′src)−H(s′tar)|

]
.

B. Useful Lemmas
Lemma B.1 (Telescoping lemma). DenoteM1 = (S,A, P1, r, γ) andM2 = (S,A, P2, r, γ) as two MDPs that only differ
in their transition dynamics. Then for any policy π, we have

JM1
(π)− JM2

(π) =
γ

1− γ
EρπM1

(s,a)

[
Es′∼P1

[V πM2
(s′)]− Es′∼P2

[V πM2
(s′)]

]
. (10)

Proof. This is Lemma 4.3 in (Luo et al., 2019), please check the proof there.
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Lemma B.2 (Extended telescoping lemma). DenoteM1 = (S,A, P1, r, γ) andM2 = (S,A, P2, r, γ) as two MDPs that
only differ in their transition dynamics. Suppose we have two policies π1, π2, we can reach the following conclusion:

JM1
(π1)− JM2

(π2) =
1

1− γ
Eρπ1

M1
(s,a)

[
Es′∼P1,a′∼π1

[Qπ2

M2
(s′, a′)]− Es′∼P2,a′∼π2

[Qπ2

M2
(s′, a′)]

]
. (11)

Proof. This is Lemma C.2 in (Xu et al., 2023), please check the proof there.

Lemma B.3. DenoteM = (S,A, P, r, γ) as the underlying MDP. Suppose we have two policies π1, π2, then the perfor-
mance difference of these policies in the MDP gives:

JM(π1)− JM(π2) =
1

1− γ
Eρπ1

M(s,a),s′∼P [Ea′∼π1
[Qπ2

M(s′, a′)]− Ea′∼π2
[Qπ2

M(s′, a′)]] . (12)

Proof. Similar to (Luo et al., 2019), we use a telescoping sum to prove the result. Denote Wj as the expected return when
deploying π1 in the MDPM for the first j steps and then switching to policy π2, i.e.,

Wj = Et<j:st∼P,at∼π1
t≥j:st∼P,at∼π2

[ ∞∑
t=0

γtr(st, at)

]
. (13)

By definition, it is easy to find that W0 = JM(π2) and W∞ = JM(π2). Next, we express the value difference as the
following form:

JM(π1)− JM(π2) =

∞∑
t=0

(Wk+1 −Wj). (14)

The above term can be simplified as:

Wj+1 −Wj = γjEsj−1∼P,aj−1∼π1

[
Esj∼P,aj∼π1

[Qπ2

M(sj , aj)]− Esj∼P,aj∼π2
[Qπ2

M(sj , aj)]
]
. (15)

Plug it back into Equation 14, and we have

JM(π1)− JM(π2) =

∞∑
t=0

(Wk+1 −Wj)

=

∞∑
j=0

γjEρπ1
M ,s′∼P [Ea′∼π1 [Q

π2

M(s′, a′)]− Ea′∼π2 [Q
π1

M(s′, a′)]]

=
1

1− γ
Eρπ1

M ,s′∼P [Ea′∼π1 [Q
π2

M(s′, a′)]− Ea′∼π2 [Q
π1

M(s′, a′)]] .

C. Pseudocodes
In this section, we provide detailed pseudocodes for online PAR and offline PAR, as shown in Algorithm 2 and Algorithm 3.

D. Experimental Details and Hyperparameter Setup
In this section, we describe the detailed experimental setup as well as the hyperparameter setup used in this work. To ensure
reproducibility, we include the codes of PAR in the supplementary material, and will open source our codes upon acceptance.

D.1. Environment Setting

We adopt the same environments proposed in (Xu et al., 2023) without any modification. We employ four widely used
environments from OpenAI Gym (Brockman et al., 2016), HalfCheetah-v2, Hopper-v2, Walker2d-v2, Ant-v3, as source
domains. To simulate dynamics discrepancies, we consider kinematic shifts and morphology shifts between the source
domain and the target domain. This results in a total of 8 target domains. Kinematic shifts indicate that some joints of the
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Algorithm 2 Policy Adaptation by Representation Mismatch (online version)
Input: Source domainMsrc, target domainMtar, target domain interaction interval F , batch size N , source domain
interaction maximum step Tmax, reward penalty coefficient β, temperature (for SAC) α, target update rate τ .

1: Initialize policy πϕ, value functions {Qθi}i=1,2 and target networks {Qθ′i}i=1,2, source domain replay buffer Dsrc ← ∅,
target domain replay buffer Dtar ← ∅. Initialize the state encoder f and state-action encoder g with parameters ψ, ξ,
respectively

2: for i = 1, 2, ..., Tmax do
3: Collect transition (ssrc, asrc, rsrc, s

′
src) with policy πϕ inMsrc

4: Store the transition in Dsrc, Dsrc ← Dsrc ∪ {(ssrc, asrc, rsrc, s′src)}
5: if i% F == 0 then
6: Given star inMtar, execute atar using the policy πϕ and get (star, atar, rtar, s′tar)
7: Store the transition in the replay buffer, Dtar ← Dtar ∪ {(star, atar, rtar, s′tar)}
8: end if
9: Sample N transitions dtar = {(sj , aj , rj , s′j)}Nj=1 from Dtar

10: Train encoders f, g in the target domain by minimizing: 1
N

∑
dtar

[
(gξ(fψ(s), a)− SG(fψ(s′)))2

]
11: Sample N transitions dsrc = {(sj , aj , rj , s′j)}Nj=1 from Dsrc

12: Modify source domain rewards into r̂src = rsrc − β × [gξ(fψ(ssrc), asrc)− fψ(s′src)]
2

13: Calculate target values y = r + γ
[
mini=1,2Qθ′i(s

′, a′)− α log πϕ(a
′|s′)

]
, a′ ∼ πϕ(·|s′)

14: Update critics by minimizing 1
2N

∑
dsrc∪dtar(Qθi − y)

2, i ∈ {1, 2}
15: Update actor by maximizing 1

2N

∑
dsrc∪dtar,a∼πϕ(·|s) [mini=1,2Qθi(s, a)− α log πϕ(·|s)]

16: Update target networks: θ′i ← τθi + (1− τ)θ′i
17: end for

simulated robot are broken, while morphology mismatch means that there are some morphological differences between the
simulated robots in the two domains. We explicate the detailed modifications below.

halfcheetah (broken back thigh): The rotation angle of the joint on the thigh of the Cheetah robot’s back leg is modified
from [−0.52, 1.05] to [−0.0052, 0.0105].

hopper (broken joints): The rotation angles of the head joint and the foot joint are modified from [−150, 0], [−45, 45] to
[−0.15, 0], [−18, 18], respectively.

walker (broken right foot): The rotation angle of the foot joint on the robot’s right leg is modified from [−45, 45] to
[−0.45, 0.45].

ant (broken hips): The rotation angle of the joints on the hip of two legs are modified from [−30, 30] to [−0.3, 0.3]

halfcheetah (no thighs): The sizes of the back thigh and the forward thigh are reduced as shown below:

# back thigh
<geom fromto="0 0 0 -0.0001 0 -0.0001" name="bthigh" size="0.046" type="capsule"/>
<body name="bshin" pos="-0.0001 0 -0.0001">
# forward thigh
<geom fromto="0 0 0 0.0001 0 0.0001" name="fthigh" size="0.046" type="capsule"/>
<body name="fshin" pos="0.0001 0 0.0001">

hopper (big head): The head size of the robot is modified as shown below:

# head size
<geom friction="0.9" fromto="0 0 1.45 0 0 1.05" name="torso_geom" size="0.125" type="

capsule"/>

walker (no right foot): The thigh on the right leg of the robot is modified as the following:

# right leg
<body name="thigh" pos="0 0 1.05">
<joint axis="0 -1 0" name="thigh_joint" pos="0 0 1.05" range="-150 0" type="hinge"/>
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Algorithm 3 Policy Adaptation by Representation Mismatch (offline version)
Input: Source domainMsrc, target domainMtar, target domain interaction interval F , batch size N , maximum gradient
step Tmax, reward penalty coefficient β, normalization coefficient ν, temperature (for SAC) α, target update rate τ . Source
domain offline dataset Doff

1: Initialize policy πϕ, value functions {Qθi}i=1,2 and target networks {Qθ′i}i=1,2, source domain replay buffer Dsrc ←
Doff , target domain replay buffer Dtar ← ∅. Initialize the state encoder f and state-action encoder g with parameters
ψ, ξ, respectively

2: for i = 1, 2, ..., Tmax do
3: if i% F == 0 then
4: Given star inMtar, execute atar using the policy πϕ and get (star, atar, rtar, s′tar)
5: Store the transition in the replay buffer, Dtar ← Dtar ∪ {(star, atar, rtar, s′tar)}
6: end if
7: Sample N transitions dtar = {(sj , aj , rj , s′j)}Nj=1 from Dtar

8: Train encoders f, g in the target domain by minimizing: 1
N

∑
dtar

[
(gξ(fψ(s), a)− SG(fψ(s′)))2

]
9: Sample N transitions dsrc = {(sj , aj , rj , s′j)}Nj=1 from Dsrc

10: Modify source domain rewards into r̂src = rsrc − β × [gξ(fψ(ssrc), asrc)− fψ(s′src)]
2

11: Calculate target values y = r + γ
[
mini=1,2Qθ′i(s

′, a′)− α log πϕ(a
′|s′)

]
, a′ ∼ πϕ(·|s′)

12: Update critics by minimizing 1
2N

∑
dsrc∪dtar(Qθi − y)

2, i ∈ {1, 2}
13: Update actor by maximizing λ

2N

∑
dsrc∪dtar,a∼πϕ(·|s) [mini=1,2Qθi(s, a)− α log πϕ(·|s)]− 1

N

∑
dsrc

(a− ã)2, where
ã ∼ πϕ(·|s), λ = ν/ 1

2N

∑
dsrc∪dtar

mini=1,2Qθi
(s,a)

14: Update target networks: θ′i ← τθi + (1− τ)θ′i
15: end for

<geom friction="0.9" fromto="0 0 1.05 0 0 1.045" name="thigh_geom" size="0.05" type="
capsule"/>

<body name="leg" pos="0 0 0.35">
<joint axis="0 -1 0" name="leg_joint" pos="0 0 1.045" range="-150 0" type="hinge"/>
<geom friction="0.9" fromto="0 0 1.045 0 0 0.3" name="leg_geom" size="0.04" type="

capsule"/>
<body name="foot" pos="0.2 0 0">
<joint axis="0 -1 0" name="foot_joint" pos="0 0 0.3" range="-45 45" type="hinge"/>
<geom friction="0.9" fromto="-0.0 0 0.3 0.2 0 0.3" name="foot_geom" size="0.06" type="

capsule"/>
</body>

</body>
</body>

ant (short feet): The size of the ant robot’s feet on its front two legs are modified into the following parameters:

# leg 1
<geom fromto="0.0 0.0 0.0 0.1 0.1 0.0" name="left_ankle_geom" size="0.08" type="capsule"/>
# leg 2
<geom fromto="0.0 0.0 0.0 -0.1 0.1 0.0" name="right_ankle_geom" size="0.08" type="capsule"

/>

For more details, one could check the xml files in the supplementary material.

D.2. Implementation Details

In this subsection, we provide implementation details as well as an introduction of the baselines adopted in this work and the
PAR algorithm. When the source domain is online, we consider the following baselines for comparison: SAC-tar (Haarnoja
et al., 2018), DARC (Eysenbach et al., 2021), DARC-weight, VGDF (Xu et al., 2023), and SAC-tune. We list the detailed
implementation details of these methods below.

SAC-tar: We train an SAC agent solely in the target domain for 105 environmental steps, with its hyperparameter setup
specified in Table 2. We do not use the temperature auto-tuned SAC, but keep the temperature coefficient α = 0.2 fixed.
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Source domains

Target domains

(kinematic shifts)

Target domains

(morphology shifts)

Figure 7. Graphical illustration of the evaluated environments. The source domains (top) are well-functional simulated robots from
Gym, the target domains either have kinematic shifts (middle) or morphology shifts (bottom) compared to the source domains.

This applies to all of the other baselines.

SAC-tune: We train an SAC agent first in the source domain for 106 environmental steps, and then fine-tune its policy by
interacting with the target domain for another 105 timesteps. We use the same hyperparameters as SAC-tar.

DARC: We follow the original paper to train two domain classifiers qθSAS
(target|st, at, st+1), qθSA(target|st, at) parame-

terized by θSAS and θSA, respectively. These domain classifiers are optimized via the cross-entropy loss:

L(θSAS) = EDtar
[log qθSAS

(target|st, at, st+1)] + EDsrc
[log(1− qθSAS

(target|st, at, st+1))] ,

L(θSA) = EDtar
[log qθSA(target|st, at)] + EDsrc

[log(1− qθSA(target|st, at))] ,

where Dsrc, Dtar are replay buffers of the source domain and the target domain, respectively. Following the original paper,
we use Gaussian standard deviation σ = 1 for training the domain classifiers. We experimentally find that DARC is quite
sensitive to the standard deviation σ, e.g., if one sets σ = 0.1, DARC exhibits very poor performance on almost all tasks.
We do not modify this value and keep it fixed across all runs. Then, DARC compensates the source domain rewards by
estimating the dynamics gap with the form: log PMtar (st+1|st,at)

PMsrc (st+1|st,at) . By approximating this term with the trained encoders,
DARC estimates the reward correction term δr by

δr(st, at) = − log
qθSAS

(target|st, at, st+1)qθSA(source|st, at)
qθSAS

(source|st, at, st+1)qθSA(target|st, at)
. (16)

The source domain rewards are formally modified via:

r̂DARC
src = rsrc(st, at)− β × δt, (17)

where β ∈ R is the reward penalty coefficient. Note that Equation 17 is slightly different from the original paper in
the following aspects: (1) DARC paper adopts β = 1 by default and does not tune this hyperparameter, while we
search the best β across {0.1, 0.5, 1.0, 2.0} for online experiments; (2) we adopt a negative reward correction term, i.e.,
r − δr, whereas DARC paper has the form r + δr. We use this form to ensure consistency between PAR and DARC in
reward correction, and for the benefit of reward penalty comparison illustrated in Figure 6 and Figure 11. We provide
DARC’s the best hyperparameter β for each task in Table 3. We adopt the default hyperparameter setup from the authors
(https://github.com/google-research/google-research/tree/master/darc). Moreover, we follow the instruction in Appendix E
of the DARC paper and warmup the algorithm without δr for the first 105 steps.

DARC-weight: This variant generally resembles vanilla DARC, except that it does not perform reward correction for the
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source domain data, but utilizes that estimated dynamics gap as an importance sampling term for critic updates, i.e.,

Lcritic = E(s,a,r,s′)∼Dsrc

[
ω(s, a, s′) (Qθi(s, a)− y)

2
]
, i ∈ {1, 2}, (18)

where

ω(s, a, s′) =
qθSAS

(target|s, a, s′)qθSA(source|s, a)
qθSAS(source|s, a, s′)qθSA(target|s, a)

. (19)

To ensure that the importance sampling weight ω(s, a, s′) lies in a valid range, we clip its value to the range of [1e−4, 1] for
training stability.

VGDF: VGDF is constructed based on the theoretical results that the performance bound of a policy in the source domain
and the target domain is controlled by value difference, i.e.,

JMtar
(π) ≥ JMsrc

(π)− γ

1− γ
EρπMsrc

[∣∣EPMsrc
[V πMtar

(s′)]− EPMtar
[V πMtar

(s′)]
∣∣] . (20)

Then, VGDF decides to filter samples in the source domain that share similar value estimates as those in the target domain.
To that end, it trains an ensemble of dynamics model akin to model-based RL (Janner et al., 2019; Pan et al., 2020; Qiao
et al., 2023; Buckman et al., 2018) in the original state-action space of the target domain to predict the next state that
follows the transition dynamics of the target domain given source domain data (ssrc, asrc). Then it measures the mean and
variance of the value ensemble {Q(s′i, a

′
i)}Mi=1 to construct a Gaussian distribution, where s′i is the predicted next state, a′i is

sampled from the policy, and M is the ensemble size. After that, the authors utilize rejection sampling to select a fixed
percentage of source domain data with the highest likelihood estimation and share them with the target domain. We use the
official implementation of VGDF (https://github.com/Kavka1/VGDF) without any modification. We set the data selection
ratio in VGDF as 25%. VGDF also adopts SAC as the base algorithm, with its temperature set to be 0.2. VGDF trains an
extra exploration policy for better exploration (while PAR does not). Following the original implementation, we warm-start
VGDF by disabling rejection sampling (i.e., accept all transitions from the source domain) for the first 105 timesteps. We
generally can reproduce the reported performance of VGDF.

PAR: Different from the above methods, PAR detects the dynamics mismatch by capturing the representation mismatch,
i.e., the representation deviation between the source domain state-action pair and its subsequent next state using the state
encoder f and state-action encoder g trained only in the target domain. Note that different from VGDF, we only train one
single state encoder along with one single state-action encoder, which we find can already incur satisfying performance and
suitable reward penalty. The encoders are updated via Equation 1. We compensate the source domain rewards by measuring
the representation deviation, as shown in Equation 2. The detailed hyperparameter setup for PAR is available in Table 2. We
use the same batch size of source domain data and target domain data for training. Since the representation deviation is
strongly correlated with the environment itself, e.g., the state space, the action space, and the reward function, we believe
it is understandable that the best penalty coefficient β differs among different evaluated online tasks. We sweep across
β ∈ {0.1, 0.5, 1.0, 2.0} and report the adopted β for each task in Table 3.

When the source domain is offline, we consider baseline methods of CQL-0 (Kumar et al., 2020), CQL+SAC, H2O (Niu
et al., 2022), and VGDF+BC (Xu et al., 2023). The corresponding implementation details can be found below.

CQL-0: CQL is a well-known offline RL algorithm. CQL-0 denotes that we train a CQL agent merely on the offline source
domain dataset and transfer the learned policy to the target domain in a zero-shot manner. We use the public implementation
of CQL (https://github.com/tinkoff-ai/CORL) and train it for 106 gradient steps.

CQL+SAC: This baseline leverages both offline source domain data and online target domain transitions for learning a
policy. Since learning from offline data requires conservatism, while learning from online samples does not, we train critics
by updating source domain data with the CQL loss while the online target domain data with the SAC loss, i.e.,

Lcritic = EDsrc∪Dtar

[
(Qθi(s, a)− y)2

]
+ βCQL

(
Es∼Dsrc,ã∼πϕ(·|s)[Qθi(s, ã)]− EDsrc

[Qθi(s, a)]
)
, i ∈ {1, 2}, (21)

where βCQL is the hyperparameter, and we use βCQL = 10.0 (which is the same as CQL-0). Note that we sample the same
batch size (128) of both source domain data and target domain for update at each gradient step. We train CQL+SAC for 106

gradient steps, with 105 interactions with the target domain.

H2O: H2O can be viewed as an offline version of DARC-weight algorithm, which also trains domain classifiers to estimate
dynamics gap, which further serves as importance sampling weights for critic optimization. It additionally combines CQL
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loss to inject conservatism. To be specific, its critic objective function can be written as:

Lcritic = EDtar

[
(Qθi(s, a)− y)2

]
+ EDsrc

[
ω(s, a, s′)(Qθi(s, a)− y)2

]
+ βCQL

(
Es∼Dsrc,ã∼πϕ(·|s)[Qθi(s, ã)]− EDsrc

[Qθi(s, a)]
)
, i ∈ {1, 2},

(22)

where ω(s, a, s′) is evaluated as in Equation 19. We use the default configurations of hyperparameters specified in the
official codebase (https://github.com/t6-thu/H2O), except that we use βCQL = 10.0 since we experimentally find that the
recommended βCQL = 0.01 from the authors incurs very poor performance on all of the datasets. We train H2O for 106

gradient steps, and allow the policy to gather data in the target domain every 10 steps.

VGDF+BC: VGDF+BC generally has the same hyperparameter setup as VGDF, except that we incorporate a behavior
cloning term into its policy training, akin to offline PAR. Its actor generally follows the same way of updating as Equation 6.
We take the results of VGDF+BC on six medium-level datasets from its paper directly, where one can see that it actually
uses different hyperparameter setups on different tasks, i.e., ν. For other datasets, we set ν = 5 by following the instructions
from the original paper. We train VGDF+BC for 106 gradient steps, with 105 interactions with the target domain.

PAR: Offline PAR differs from its online variant in that an additional behavior cloning term is involved. We generally adopt
fixed reward penalty coefficient β and normalization parameter ν across all tasks, as depicted in Table 3. We train PAR for
106 gradient steps, and let it interact with the target domain every 10 gradient steps.

D.3. Hyperparameter Setup

In this part, we list the detailed hyperparameter setup for PAR and baseline methods in Table 2. We also provide the adopted
key hyperparameters given both the online source domain and the offline source domain in Table 3.

E. Extended Experimental Results
In the main text, we cannot include all of our experiments due to the space limit. In this section, we provide more
experimental results concerning on parameter study (i.e., more experiments with the online source domain and results given
the offline source domain), and the reward penalty comparison between DARC and PAR. We believe these are helpful to
better understand the effect of the key hyperparameters in PAR and further validate the advantages of PAR against DARC.

E.1. Wider Parameter Study

We first include more results of the parameter study of reward penalty coefficient β and target domain interaction interval F ,
as illustrated in Figure 8(a) and Figure 8(b), respectively. Note that the results are conducted over the online PAR algorithm.
For the reward penalty coefficient β, setting β = 0 makes PAR degenerate into VGDF with the data selection ratio 0%. We
find that setting β = 0 (i.e., no reward modification for source domain data) generally does not incur a good performance,
which is consistent with the results in Figure 3(a) of the main text. Note that these tasks also have different optimal β.

As for the target domain interaction interval F , one can see that on other tasks, larger F also results in a better performance.
This indicates that the amount of source domain data is critical for PAR, and more data from the source domain can boost
the performance of PAR in the target domain.

Next, we investigate how the hyperparameters affect the performance of PAR given an offline source domain. We are
interested in the reward penalty coefficient β and the normalization parameter ν. We sweep across β ∈ {0, 0.1, 0.5, 1.0, 2.0}
and ν ∈ {1.0, 2.5, 5.0, 10.0}. We summarize the analysis and experimental results below.

Reward penalty coefficient β in offline PAR. We consider two quality levels, medium and medium-expert, from D4RL
datasets as the source domain, and run experiments on four tasks, two with kinematic shifts (walker (broken right foot), ant
(broken hips)) and two with morphology shifts (halfcheetah (no thighs), hopper (big head)). We present the results in Figure
9. We find that setting β = 0 incurs worse performance on most of the tasks, regardless of whether medium-level datasets or
medium-expert-level datasets are provided. This further demonstrates the necessity of reward modification by PAR and
highlights the effectiveness of our method. We also observe that the performance of offline PAR is generally better with
higher quality datasets. Meanwhile, it still holds that the best penalty coefficient β differs in different environments. For all
of our offline experiments, we set β = 1 by default and do not tune this value.

Normalization coefficient ν in offline PAR. ν controls the balance between the behavior cloning term and the term that
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Table 2. Detailed hyperparameter setup for PAR and baseline methods on the evaluated tasks.

Hyperparameter Value

Shared
Actor network (256, 256)
Critic network (256, 256)
Batch size 256 for SAC-tar, CQL-0, and 128 for others
Learning rate 3× 10−4

Optimizer Adam (Kingma & Ba, 2015)
Discount factor 0.99
Replay buffer size 106

Warmup steps 0 for PAR and 105 for others
Nonlinearity ReLU
Target update rate 5× 10−3

Temperature coefficient 0.2
Maximum log std 2
Minimum log std −20
Target domain interaction interval 10

DARC, DARC-weight, H2O
Classifier Network (256, 256)

CQL-0, CQL+SAC, H2O
CQL penalty coefficient βCQL 10.0

VGDF, VGDF+BC
Dynamics model network (200, 200, 200, 200, 200)
Ensemble size 7
Data selection ratio 25%
Normalization coefficient ν 5.0

VGDF
Exploration policy network (256, 256)

PAR
Encoder Network (256, 256)
Representation dimension 256
Nomralization coefficient ν 5.0

Table 3. Adopted hyperparameters for PAR and baseline method DARC on evaluated environments.

Task Name PAR (online) β DARC (online) β PAR (offline) β PAR (offline) ν

halfcheetah (broken back thigh) 1.0 2.0 1.0 5.0
halfcheetah (no thighs) 2.0 0.5 1.0 5.0
hopper (broken joints) 0.5 2.0 1.0 5.0
hopper (big head) 0.5 1.0 1.0 5.0
walker (broken right foot) 0.5 1.0 1.0 5.0
walker (no right thigh) 0.5 1.0 1.0 5.0
ant (broken hips) 0.1 1.0 1.0 5.0
ant (short feet) 0.1 0.1 1.0 5.0

24



Cross-Domain Policy Adaptation by Capturing Representation Mismatch

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (×105)

0

2000

4000

6000

R
et

ur
n

halfcheetah (no thighs)

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (×105)

0

500

1000

1500

2000

2500

3000
hopper (broken joints)

=0 =0.1 =0.5 =1.0 =2.0

(a) Penalty coefficient β.
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Figure 8. Extended parameter study of (a) reward penalty coefficient β, (b) target domain interaction interval F on wider
environments. These curves show the performance of the policy in the target domain. The reported results are averaged across 5 different
random seeds and the shaded region represents the standard deviation.
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(a) Comparison of different reward penalty coefficient β given medium-level datasets.
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(b) Comparison of different reward penalty coefficient β given medium-expert-level datasets.

Figure 9. Extended parameter study of reward penalty coefficient β given medium, medium-expert level source domain datasets.
We report the average return over 5 different runs along with the standard deviation of the policy in the target domain.

maximizes the Q-value. Intuitively, a larger ν tends to bring more conservatism, encouraging the learned policy to be close
to the behavior policy in the source domain dataset. We run experiments on four tasks that are made up of two tasks with
kinematic shifts (hopper (broken joints), walker (broken right foot)) and two tasks with morphology shifts (halfcheetah (no
thighs), ant (short feet)). The results can be found in Figure 10. We can see that PAR is robust to ν on tasks like walker
(broken right foot). While it turns out that on tasks like hopper (broken joints), a too small ν is not preferred, and on tasks
like halfcheetah (no thighs), a too large ν does not ensure good performance. We therefore adopt ν = 5.0 for all of the
offline experiments to seek a trade-off.

E.2. Wider Evidence on Reward Penalty Comparison between DARC and PAR

In this part, we provide more evidence that PAR is better than DARC. Since DARC is an online algorithm, we conduct
experiments with the online source domains. We run experiments on wider environments, including two environments
with kinematic mismatch (hopper (broken joints), walker (broken right foot)) and two tasks with morphology mismatch
(halfcheetah (no thighs), ant (short feet)). We summarize the comparison results in Figure 11. Based on the curves, we find
that on many tasks (e.g., halfcheetah (no thighs)), the reward penalty given by DARC is quite large and even becomes larger
with more environment steps, indicating that DARC can be overly pessimistic and the classifiers may fail to produce suitable
reward penalties to compensate source domain data. On the hopper (broken joints) task, however, DARC gives penalties
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(a) Comparison of different normalization coefficient ν given medium-level datasets.
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(b) Comparison of different normalization coefficient ν given medium-expert-level datasets.

Figure 10. Extended parameter study of normalization coefficient ν under medium, medium-expert level source domain datasets.
The results depict the mean performance of the policy in the target domain with 5 different random seeds. The shaded region is the
standard deviation.
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Figure 11. Extensive comparison on reward penalty produced by DARC and PAR. We record the mean reward penalty calculated in a
sampled batch during the training of each algorithm. The environmental steps here denote the step in the source domain. The reported
curves are further averaged across 5 independent runs and the shaded region captures the standard deviation.

that quite approach 0, and fails to inform the agent of the dynamics difference between the source domain and the target
domain. Instead, we observe that on all of the evaluated tasks, the reward penalty given by PAR gradually converges to
a small number (but not 0). Despite that at the initial stage, the collected samples from the source domain and the target
domain may have large discrepancies, our method can fully exploit these data and successfully find dynamics-consistent
behaviors and transitions later on. We believe these further verify that PAR is a better choice than DARC.

F. Compute Infrastructure
In Table 4, we list the compute infrastructure that we use to run all of the algorithms.

Table 4. Compute infrastructure.

CPU GPU Memory

AMD EPYC 7452 RTX3090×8 288GB
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