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Abstract

Large language models (LLMs) based on trans-
former are witnessing a notable trend of size
expansion, which brings considerable costs to
both model training and inference. However,
existing methods such as model quantization,
knowledge distillation, and model pruning are
constrained by various issues, including hard-
ware support limitations, the need for extensive
training, and alterations to the internal structure
of the model. In this paper, we propose a con-
cise layer-wise pruning method called Layer
Collapse (LaCo), in which rear model layers
collapse into a prior layer, enabling a rapid
reduction in model size while preserving the
model structure. Comprehensive experiments
show that our method maintains an average
task performance of over 80% at pruning ratios
of 25-30%, significantly outperforming exist-
ing state-of-the-art structured pruning methods.
We also conduct post-training experiments to
confirm that the proposed pruning method ef-
fectively inherits the parameters of the origi-
nal model. Finally, we discuss our motivation
from the perspective of layer-wise similarity
and evaluate the performance of the pruned
LLMs across various pruning ratios.

1 Introduction

Recently, large language models (LLMs) based on
transformer (Vaswani et al., 2017) have showcased
impressive capabilities across diverse tasks. How-
ever, the prevailing trend in model development
leans towards larger scales, placing substantial de-
mands on computational power and resulting in
challenges for many researchers and companies.
To mitigate the above challenge, various ap-
proaches have been explored to reduce the infer-
ence and training costs of models or to derive a
smaller model from an LLM, including model
quantization (Dettmers et al., 2022; Yao et al.,
2022; Xiao et al., 2023), knowledge distillation
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Figure 1: An example of Reserving-Differences-while-
Seeking-Common (RDSC) Layer Merge. In (a), we
perform parameter differencing, which we regard as
Reserving-Differences. In (b), we conduct parameter
merging, which we interpret as Seeking-Common.

(Liu et al., 2022; Hsieh et al., 2023; Shridhar et al.,
2023), and model pruning (Zhang et al., 2022; Fran-
tar and Alistarh, 2023; Ma et al., 2023). How-
ever, existing solutions exhibit certain notable draw-
backs. Model quantization significantly impacts
model performance and typically necessitates spe-
cific hardware support. Knowledge distillation of-
ten requires retraining a smaller model at a higher
training cost and is usually task-specific. Exist-
ing Model pruning can be categorized into non-
structured and structured pruning. Non-structured
pruning often involves model sparsity, which gen-
erally leads to notable performance loss and also
relies on hardware support. Structured pruning en-
tails removing specific modules from the model,
but it frequently modifies the model structure, di-
minishing the portability of the model.
Considering the above issues, we contemplate di-
rectly pruning the model with a new idea: to prune
some layers directly from a well-trained LLM and
substitute the parameters of one layer for multiple
layers, enabling effective model pruning.
Specifically, we observe that for certain layers,
merging the differential values of the parameters



of this layer and the consecutive layers following
it often does not result in significant model perfor-
mance loss, as illustrated in Figure 1.

We term it the Reserving-Differences-while-
Seeking-Common (RDSC) Layer Merge, as it incor-
porates parameter differencing and merging. Build-
ing upon this insight, we introduce a streamlined
yet potent layer-wise pruning method dubbed Layer
Collapse (LaCo), in which rear layers collapse into
a prior layer, with the objective of preserving the
model’s output representation as closely as feasible
to the representation before pruning. In this paper:

e The Layer Collapse can directly remove 30%-
50% of model layers without training while main-
taining the model performance. Experiments on
multiple benchmarks show that our approach out-
performs state-of-the-art structured pruning meth-
ods under equivalent pruning ratios.

e The Layer Collapse also possesses excellent
properties of preserving the internal structure of
model layers, such as maintaining intermediate di-
mensions unchanged. Hence, it can be quickly
adapted to existing applications.

o We further conduct post-training on the pruned
model, confirming that the Layer Collapse can effi-
ciently inherit parameters, requiring only a minimal
amount of training to restore the pruned model to
the loss convergence level of the original model.
Furthermore, we discuss our motivation and evalu-
ate the performance of pruned models using LaCo
across different pruning ratios.

2 Method

2.1 Reserving-Differences-while-Seeking-
Common Layer Merge

Given an LLM, for its [-th layer, we denote all
its parameters, including those in self-attention
(SAN) and MLP as ;. For the m consecutive
layers following it, we merge the parameters of
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where (04 — 0) is the parameter difference be-
tween each subsequent layer and the [-th layer.
During parameter differencing and merging, given
identical layer structures, we independently apply
these processes to both SAN and MLP. After that,

Algorithm 1 Layer Collapse

Input:

1: LLM M

2: Number of layers combined in each merge C

3: Layer range considered [£, H]

4: Minimum interval between two adjacent

merged layers 7

5: Few-shot Calibration Samples D

6: Threshold for representation similarity 7
Output: Pruned LLM M*

72 M* =M

8: [+ H-C

9: while! >= L do

10: K < Min(C — 1, Layer_Count(M™*)—1[)
11: Mmp < RDSC_Lay_Merge(M*, [, K)
12: s < Avg_Cos_Sim(Myy,, M, D)

13: if s > 7T then

14: M* = My

15: l+1-T1

16: if [ > Layer_Count(M?™) then
17: [ +Layer_Count(M*)—C
18: end if

19: else

20: l+—1-1

21: end if

22: end while
23: return M*

these m consecutive layers will be discarded. Sub-
sequent model pruning will continuously involve
RDSC Layer Merge, a process that can be regarded
as the continual collapse of layers onto specific
layers, hence the name Layer Collapse.

2.2 Layer Collapse

We dynamically merge adjacent layers starting
from the topmost layer of the model, while en-
suring that the output representation of the pruned
model on few-shot calibration samples remains as
similar as possible to the original model, to ensure
minimal performance loss. Algorithm 1 summa-
rizes the procedure of Layer Collapse:

(1) Preparation (line 1-6)

For an LLM M to be pruned, we define the
number of layers to be merged during each merg-
ing operation as C. We configure the merging to
operate within a certain range of layers, denoted as
[L,H]. As the layer merging operation inevitably
leads to a performance loss, to prevent consecutive
layer merging from causing a sharp decline in the
model performance, we set a minimum interval of
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Figure 2: An illustration of Layer Collapse.

layers between two merging operations as Z. Few-
shot calibration samples D, typically a few plain
sentences, are used during the pruning process. We
perform forward computations on D with both the
pruned and original models to obtain the output
representations and ensure that the similarity of
representations is not less than the threshold 7.
(2) Pruning (line 7-23)

We present an illustration of Layer Collapse,
as depicted in Figure 2. We begin by initializing
the model M* with the model M and set a layer
pointer [ to start from H — C. Then, the iterative
process of pruning begins:

RDSC Layer Merge (line 10-11) During each
iteration, our approach involves merging the XC lay-
ers following layer [ into layer [ itself and then dis-
carding the redundant KC layers, where K is the min-
imum of C — 1 and the total layer count of M* — 1,
implying merging either the subsequent C — 1 lay-
ers or all layers following [, thus to prune the model
M?*, resulting in the interim model M.

Calculate Similarity (line 12) We process each
sentence in D using forward computations with
Mmp and M to derive their representations. For
every sentence, we then calculate the cosine similar-
ity between these representations from both mod-
els, averaging these values to obtain the overall
similarity score s.

Merge Evaluation and Adjustment (line 13-
21) Then, we evaluate s against the threshold 7.
Should s exceed 7T, the current merge is considered
successful. Then, My, is updated to M* for the
next iteration, and the pointer [ is adjusted down-
wards by Z layers. Conversely, [ is simply reduced

by a single layer. It is important to highlight that
the instances may occur where [ falls below the
total layer count of M™ after a series of successive
merges. Consequently, it is required to reset ! to
the layer count in M* — C, as illustrated in line 15.

We iterate through the above process until [ is
less than £ and output the pruned LLM.

2.3 Complexity Analysis

The complexity of LaCo primarily depends on
model inference. In the worst-case scenario, where
L is set to 0 and # is set to the total number of
model layers. If in each iteration, the similarity s is
less than 7, then all layers will be traversed. Thus,
the worst-case time complexity is O(H x ||D||).
For instance, considering Llama2-13B with 40 lay-
ers and ||D|| consisting of 10 sentences, the maxi-
mum number of inference steps would be only 400
sentences, which can be completed within minutes
on a single GPU. Therefore, our approach demon-
strates excellent time performance.

3 Experiments

3.1 Models

To assess the effectiveness of the proposed LaCo,
we conduct experiments on popular English LLMs,
Llama2-7B and 13B (Touvron et al., 2023). Ad-
ditionally, we test the effectiveness on bilingual
LLMs, specifically Baichuan2-7B and 13B (Yang
et al., 2023), which support both Chinese and En-
glish. We leverage the base versions of these LLMs.
All these models are decoder-only models based
on the transformer architecture.



3.2 Benchmarks

To comprehensively evaluate the pruned model’s
capabilities, we utilized the OpenCompass eval-
uation framework (Contributors, 2023). Specifi-
cally, following OpenCompass categorization, we
conduct evaluations in five aspects: Reasoning,
Language, Knowledge, Examination and Under-
standing. We select several benchmarks from each
category. Reasoning: CMNLI (Xu et al., 2020),
HellaSwag (HeSw) (Zellers et al., 2019), PIQA
(Bisk et al., 2019). Language: CHID (Zheng et al.,
2019), WSC (Levesque et al., 2012). Knowledge:
CommonSenseQA (CoQA) (Talmor et al., 2018),
BoolQ (Clark et al., 2019). Examination: MMLU
(Hendrycks et al., 2021), CMMLU (Li et al., 2023).
Understanding: Race-High/Middle (H/M) (Lai
et al., 2017), XSum (Narayan et al., 2018), C3
(Sun et al., 2020).

We conduct evaluations using official scripts
from OpenCompass, all zero-shot or few-shot,
without additional training. Two evaluation modes
are utilized: perplexity (PPL) and generation
(GEN) . For CHID and XSum, we use the GEN
mode. For the WSC dataset, we use both PPL
(WSCp) and GEN (WSCg) modes. The remain-
ing benchmarks are evaluated using the PPL mode.
The evaluation results on each benchmark are con-
verted to a score by OpenCompass, where a higher
score indicates better performance. OpenCom-
pass provides official evaluation results for the
Baichuan?2 and Llama?2 series. However, to avoid
discrepancies resulting from hardware and software
environments, as well as potential errors in official
results, we reproduce all results to ensure fairness.

3.3 Baselines

Since our LaCo involves structured pruning, which
directly removes components from the LLM,
we chose two current state-of-the-art (SOTA)
structured pruning methods, LLM-Pruner (LLM-
Pru.) (Ma et al., 2023) and SliceGPT (Ashkboos
et al., 2024) which has surpassed the previous
SOTA sparsity method, SparseGPT (Frantar and
Alistarh, 2023) as our baselines. For experiments,
we set the pruning ratio of these methods to be
equivalent to or slightly smaller than our method
to ensure fairness.

'opencompass.readthedocs.io/en/latest/get_started/faq.html

3.4 Settings

Since previous work mostly set pruning ratios be-
low 30%, we heuristically adjust the hyperparame-
ters to bring the model pruning ratio close to 30%,
as shown in Appendix A Table 5. We randomly se-
lect 5 sentences from both the English and Chinese
Wikipedia datasets for Baichuan2 and 10 sentences
from English Wikipedia for Llama2 as few-shot cal-
ibration samples. All experiments are conducted
on a server with 8 Nvidia A100 80GB GPUs.

3.5 Main Results

In Table 1, we present the results of four LLMs un-
der different pruning methods across various bench-
marks. “Dense” represents the official results of
the unpruned LLMs in OpenCompass leaderboards,
while “Dense*” represents our reproduction of the
“Dense” results. "LLMPru." and "SliceGPT" corre-
spond to the two baselines, respectively. “Ratio"
refers to the overall pruning ratio, namely the pro-
portion of the total number of pruned parameters
to that of the unpruned model. “Lay.” denotes the
total number of layers in the model.

Comparing Dense and Dense*, the results show
not much difference, with most discrepancies
within 5%. This indicates our experimental setup
is error-free. To ensure fairness, we compare the
results against Dense* in the subsequent analyses.

Upon comparing LaCo with the baselines, from
Table 1, it can be observed that LaCo achieves the
best results on most benchmarks, despite our prun-
ing ratio being slightly higher than the baselines.

To provide a more intuitive presentation of the
results in Table 1, we compute the average scores
of each pruner across all benchmarks (Avg.), the
average scores per category (Reas., Lan., Know.,
Exam., Unde.), and the average performance per-
centages relative to Dense™ across all benchmarks
(Per.) in Table 2. Overall, our average scores are
significantly higher than the baselines. It can also
be inferred that Laco exhibits significantly superior
performance overall in four out of five categories:
Language, Knowledge, Examination, and Under-
standing. Even though there is a slight dip in per-
formance in Reasoning, it remains comparable to
the baselines. In addition, LaCo holds a significant
advantage: relative to Dense*, our average perfor-
mance percentage across all datasets is far superior
to the baselines. The average percentage surpasses
80% in three out of four models, with the lowest
being on Baichuan2-7B, yet still exceeding 73%.



LLM ‘ Pruner |Ratio/Lay. Reasoning Language Knowledge | Examination Understanding
CMNLI HeSw PIQA|CHID WSCp WSCg|CoQA BoolQIMMLU CMMLU Racey Racey XSum C3
| Dense | 0%/32 | 34.90 74.00 78.30[46.50 -  66.30|66.50 74.90| 46.80 31.80 [37.50 40.20 19.70 42.80
Ll-a7r;1332‘ Dense” | 0%/32 | 32.98 71.3578.18/46.04 37.50 38.46|66.67 70.67| 45.92 31.86 |35.51 33.15 19.68 43.78
|[LLMPru.|27.0%/32| 34.33 56.46 71.22|25.25 36.54 0.96 |42.51 55.20| 23.33  25.25 |22.56 22.35 11.51 25.64
|SliceGPT]|26.4%/32| 31.70 50.27 66.21|20.79 36.54 19.23|41.36 38.32| 28.92 2537 |21.07 21.66 4.89 39.78
| LaCo |27.1%/23| 34.43 55.69 69.80|36.14 40.38 25.00|45.70 64.07| 26.45 2524 |22.61 23.61 15.64 39.67
| Dense | 0%/40 | 41.40 77.50 79.80|53.00 -  66.30|66.70 82.40| 55.00 38.40 |58.90 63.00 23.40 46.10
Lﬁ‘g‘;‘z\ Dense* | 0%/40 | 32.99 74.83 79.71|52.97 50.96 63.46|66.91 71.50| 55.63 38.74 |58.03 60.24 23.56 47.51
|LLMPru.| 24.4%/40 | 33.03 67.76 76.66|35.64 40.38 0.00 |50.86 56.42| 25.21 2471 |22.47 22.08 19.17 32.33
|SliceGPT|23.6%/40| 29.82 55.71 69.04|19.31 36.54 36.54|47.26 37.86| 37.14 2579 |23.41 24.03 5.27 41.92
| LaCo |24.6%/30| 32.86 64.39 74.27|40.10 52.88 35.58|52.66 63.98| 45.93 32.62 |54.49 56.55 14.45 44.93
| Dense | 0%/32 | 32.90 67.00 76.2082.70 -  66.30|63.00 63.20| 54.70 57.00 |52.50 50.90 20.90 64.50
B_:?7i]c32.‘ Dense™ | 0%/32 | 33.37 67.56 76.17|82.67 41.35 63.46|63.14 63.30| 54.25 56.95 |52.63 51.04 20.84 64.55
|LLMPru.|24.2%/32 | 32.28 53.66 71.82|69.80 53.85 0.00 |47.83 61.19| 24.93 25.69 |21.96 22.28 15.98 41.64
|SliceGPT|22.2%/32 | 32.07 25.29 50.33|14.85 36.54 0.00 |19.57 39.30| 25.18 2525 |23.53 22.49 0.00 26.58
| LaCo |24.2%/23| 33.00 52.28 68.50|76.24 42.31 26.92|47.26 56.15| 31.53  31.24 |28.99 27.72 12.03 50.85
| Dense | 0%/40 | 32.70 70.80 78.10[83.20 -  63.20]65.60 67.00| 59.50 61.30 [67.20 68.90 25.20 65.60
Bi;cé\ Dense” | 0%/40 | 3321 71.10 78.07|83.17 41.35 63.46|65.60 67.00| 58.81 61.27 |67.27 68.94 24.95 65.64
|[LLMPru.|24.3%/40| 33.80 53.57 71.82|72.77 37.50 0.00 |38.82 56.54| 23.19 25.18 |21.17 21.61 13.67 39.89
|SliceGPT]|22.8%/40 | 32.07 25.85 51.03|10.40 36.54 0.00 |18.02 37.83| 22.95 2526 |21.56 21.52 0.00 24.99
| LaCo |24.7%/30| 33.03 60.71 68.88|76.73 44.23 60.58|55.45 62.35| 51.35 53.65 |56.92 57.80 12.32 61.10

Table 1: The main results of our experiments. “Dense" is the official LLM results in OpenCompass and “Dense*" is
our reproduction. "LLMPru." and "SliceGPT" are two baseline comparisons.

However, none of the baselines have exceeded 70%
on any model.

To demonstrate the stability of models pruned
by our LaCo method, we compute the percentage
of result on each benchmark relative to Dense*, as
shown in Appendix C Table 7. We observe that
models pruned by LaCo exhibit stability relative to
the baselines, maintaining performance above 70%
on most benchmarks. Furthermore, there were no
instances of models crashing outright, with perfor-
mance dropping below 30%.

It is worth noting that on three benchmarks eval-
vated through GEN mode, CHID, XSUM, and
WSCgq, the LLMs pruned by LaCo maintain rela-
tively stable performance, while models pruned by
baselines exhibit poorly, with even multiple results
becoming 0.00. GEN mode scores are based on
the model’s generated sentences, and the models
pruned by baselines are prone to producing mean-
ingless repetitive outputs. In Appendix C Table 8,
We showcase an example from the Xsum bench-
mark, where Llama2-7B, pruned by baselines, pro-

LLM | Pruner |Avg.| Per. |Reas.|Lan. Know.Exam.[Unde.
| Dense* [46.55| 100% [60.8340.67) 68.67| 38.89|33.03
Llama2,

B ILLMPru.[32.36/67.79%54.00[20.92] 48.86|24.29 20.52

|SliceGPT|31.87|67.37%49.39[25.52| 39.84| 27.15 |21.85

| LaCo [37.46/30.28%53.30/33.84| 54.89| 25.85(25.38

| Dense* [55.50] 100% [62.51/55.80]69.20|47.18 |47.34
L!??EZ\LLMPru. 136.19]65.87%|39.15[25.34| 53.64| 24.96 [ 24.01

|SliceGPT|34.97|61.78%|51.52/30.80| 42.56 | 31.46 |23.66

| LaCo [47.55(85.21%]57.17[42.85| 58.32| 39.28 [42.60

| Dense* [56.52| 100% [59.03(62.49] 63.22|55.60 47.26
Bf‘;ﬁz' |LLMPru.[38.78|69.65% |52.59}41.22| 54.51 | 25.31|25.46

[SliceGPT|24.36|44.27%35.90|17.13]29.44| 25.22 |18.15

| LaCo [41.79[73.26%51.26/48.49| 51.70| 31.38 |29.90
| Dense* [60.70] 100% [60.79]62.66| 66.30| 60.04 |56.70

Baic2.

13p ILLMPru.[36.40/60.70%|53.06[36.76| 47.68 | 24.18 |24.08

|SliceGPT|23.43(40.33%36.32|15.65] 27.92| 24.1017.02

| LaCo [53.9487.94%|54.21/60.51| 58.90| 52.50 [47.04

Table 2: The average scores and the percentages com-
parison with the Dense*.



duces nonsensical repeated outputs, whereas our
LaCo yields outputs resembling normal sentences.
In summary, our LaCo stands out as a superior
pruning method, effectively preserving model per-
formance and demonstrating exceptional stability
across various benchmarks. Additionally, our ap-
proach is straightforward, relying solely on param-
eter differences and additions without necessitat-
ing modifications to the model’s internal structure,
such as intermediate layer dimensions. This results
in a more concise and efficient pruning solution.

4 Analysis

4.1 Post-training and Re-pruning

4.1.1 Post-training

Due to the inevitable performance loss caused by
pruning, we investigate whether models pruned us-
ing our LaCo can effectively inherit parameters
from the original model and quickly recover per-
formance through post-training. Specifically, we
select the pruned Llama2-7B and Baichuan2-7B
models obtained through LaCo in the main exper-
iments and post-train them. For training pruned
Llama2-7B, we utilize approximately 1.0 billion
tokens from the English dataset, while for pruned
Baichuan2-7B, we employ approximately 1.25 bil-
lion tokens, with a 50% from English and Chinese.
The detailed implementation can be found in the
Appendix B.

In Figure 3, we present the loss curves. It can be
observed that both models converge rapidly during
training, with the loss showing a sharp decline af-
ter about 250 steps, then stabilizing. The pruned
Llama2-7B and Baichuan2-7B models, both ap-
proximately 5 billion parameters, exhibit final con-
vergence losses around 1.6 and 2.0, which are
quite comparable to the reported values of 1.75 for
Llama2-7B and 1.9 for Baichuan2-7B in their tech-
nical reports. The post-training of pruned Llama2-
7B and Baichuan2-7B on 4 Nvidia A100 80GB
GPUs takes approximately 28 hours and 35 hours,
respectively. Training a 5B LLM from scratch
requires at least 500 billion tokens on hundreds
of A100 GPUs for several months. However, we
achieve a loss-converged model of similar size with
only one-thousandth of their cost. This indicates
that the pruned models have effectively inherited
the parameters of the original models, enabling
them to rapidly recover performance with minimal
post-training and achieve convergence.

We also evaluate the post-trained models on mul-

Pruned Llama2-7B + Post training  Pruned Baichuan2-7B + Post training

24 original 8 original
' smoothed 7 smoothed
2.2 6
n
320 85
4
1.8
3
1.6 5
0 500 1000 1500 0 500 1000 1500 2000
step step

Figure 3: Loss curves for post-training.

LLM | Method |Avg.|Reas.| Lan. [Know.[Exam.|Unde.
| Dense” [46.55/60.83}40.67| 68.67|38.89|33.03
| LaCo |[37.46/53.30[33.84| 54.89|25.85|25.38
LaCo

+post train|

LaCo
+post train|
+re prune

\ Dense™ \56.52\59.03\62,49\ 63.22 \ 55.60 \47.26
\ LaCo \41.79\51.26\48.49\ 51.70 \ 31.38 \29.90
LaCo

+post train|

Llama2
-7B

40.33‘56.66‘36.43‘ 61.85 ‘ 27.40 ‘26.70

32.40[48.0720.26] 49.46 | 25.72 |24.56

Baic2.
-7B

40.46‘51.67‘40.82‘ 53.97 ‘ 27.98 ‘31.28

Table 3: The average scores across all categories and
the overall average score of pruned models, post-trained
models, as well as post-trained models followed by re-
pruning.

tiple benchmarks, and the detailed results can be
found in Appendix C Table 9. We list the aver-
age score for each category and the overall average
score in Table 3.

From the tables, it is evident that the post-
training of pruned Llama2-7B significantly im-
proves its performance across various benchmarks.
However, the performance of pruned Baichuan2-
7B after post-training shows mixed results, with
some benchmarks showing improvement while oth-
ers exhibit a decrease and there is also a slight
decrease in the overall score. We speculate that
the pre-training data of Baichuan2-7B includes a
variety of sources, resulting in a data distribution
different from that of our post-training data, hinder-
ing the effectiveness of post-training. However, the
consistent score improvement on pruned Llama2-
7B indicates that models pruned using our LaCo
indeed effectively inherit the parameters and can
regain performance through low-cost post-training.



4.1.2 Re-pruning

Since it is possible to partially restore performance
using post-training on an LLM with approximately
25%-30% of its parameters pruned, it raises the
question of whether we can further prune the post-
trained model to obtain one with only around 50%
of the original parameters while still maintaining
relatively good model performance. To this end,
we further prune the previously post-trained pruned
Llama2-7B model using LaCo, resulting in a model
with 17 layers, retaining 55% of the parameters of
the original Llama2-7B model with 32 layers. We
evaluate the re-pruned model. The detailed results
are shown in Appendix C Table 9 and the average
results are in Table 3.

From the tables, it can be seen that although
the model has only 55% of the parameters of the
original model, it still retains an average of approx-
imately 70% of the original 7B model performance.
However, our training data quality and scale are
limited. With access to more and better training
data, our LaCo method should be able to demon-
strate even greater utility in this pruning+post-
training+re-pruning pipeline on larger models.

4.2 Layer-wise Similarity

This section discusses our motivation, i.e., why
we consider merging adjacent layers. Our motiva-
tion primarily stems from the observation that the
changes in parameters and output representations
between adjacent layers within the LLM are not
particularly significant.

In Figure 4, we illustrate the L2 similarities be-
tween the SAN qg.k,v matrices of each layer and
their corresponding matrices from the subsequent
one layer as well as the up and down matrices of
the MLP for both Llama2-7B and Baichuan2-7B.
The results indicate that the maximum L2 values
between corresponding matrices in adjacent layers
are generally no more than 200. However, the sizes
of the up and down matrices of the MLP reach
11008*4096, and the SAN q,k,v matrices also con-
tain 4096*4096 parameters. Therefore, the change
in each element of the matrices between adjacent
layers is very small.

In Figure 5 (a), we randomly select 20 sentences
from Wikipedia and calculate the cosine similar-
ity between the hidden-states of adjacent layers
outputs. The results show that for both Baichuan?2-
7B and Llama2-7B, the representation similarity
between adjacent layers from layers 3 to 28 is typi-

Baichuan2-7B
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Figure 4: The L2 similarity of corresponding matrices
between adjacent layers.
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Figure 5: The cosine similarity of layer representations.

cally very close to 1, which suggests that the repre-
sentations between adjacent layers of LLMs also
exhibit high similarity. Therefore, the high simi-
larity in parameters and representations between
adjacent layers leads us to consider whether a sin-
gle layer can replace multiple layers following it.

Moreover, the similarity in parameters suggests
that we should pay more attention to the differ-
ences between layers. Inspired by previous model
merging work (Yu et al., 2023; Matena and Raffel,
2022), we come up with collecting the parameter
differences between layers and then merging them
into a single layer.

To verify that RDSC Layer Merge can indeed
replace multiple layers with a merged single layer,
we conduct the following experiments. Within lay-
ers 10 to 19, we attempt to merge consecutive 4
layers into one layer sequentially, then evaluate the
cosine similarity between the output of the merged
layer and the output of the original last layer among
those 4 layers, as shown in Figure 5 (b). The results
showcase that the lowest cosine similarity on the
4096-dimensional vectors is above 0.996, confirm-
ing the effectiveness of the proposed RDSC Layer
Merge in preserving representations.

4.3 Varying Pruning Ratio

In this section, we explore the performance of LaCo
at different pruning ratios. We conduct experiments



LLM |Ratio/Lay.| Avg. |Reas.| Lan. [Know.[Exam.|Unde.

| 0%/32 [46.55/60.83]40.67|68.67|38.89 |33.03
Llf‘;gaz\ 12.0%/28 [36.13[44.46/36.31| 56.35 | 26.34| 24.54
|27.19%/23 [37.46/53.30[33.84| 54.89 | 25.85 |25.38
|45.0%/17|30.00}43.66[19.27 48.06 | 24.78 |21.44
| 0%/40 [55.50/62.51/55.8069.20 47.18 |47.34
| 14.6%/3453.89/60.56/54.51| 63.58 | 46.10 |47.46
|24.7%/30[47.55|57.17}42.85| 58.3239.28 |42.60
|49.79%/20[38.27/48.20|26.89| 49.26 | 32.82 |36.58

Llama2
-13B

Table 4: The model performance at different pruning
ratios.

on Llama2-7B and Llama2-13B, controlling the
pruning ratios at approximately 10%, 25% (our
main experiments), and around 50% by setting dif-
ferent hyperparameters (as shown in Appendix A
Table 6). We evaluate pruned models accordingly.
The average results are shown in Table 4 and the
detailed results are shown in Appendix C Table 10.

From the results, it can be observed that as the
pruning ratio increases, there is an overall decrease
in model performance. However, from around 10-
15% pruning ratio to around 25% pruning ratio,
the model performance does not decrease signif-
icantly, which indicates that our method remains
relatively stable within this range. Furthermore, at
close to 50% pruning ratio, the model still main-
tains approximately 70% of its performance, which
demonstrates that our method does not cause the
model to crash even when about half of its parame-
ters are removed.

5 Related Work

How to reduce the excessively high training and
inference costs caused by the increase in the size
of LLMs has been a critical issue of concern. In
recent years, the methods to alleviate this issue have
mainly consisted of model quantization, knowledge
distillation, and model pruning.

Model Quantization reduces the size of mod-
els by converting their weights from high-
precision floating-point representations to lower-
precision floating-point or integer representations.
SmoothQuant (Xiao et al., 2023) quantizes both
weights and activation values and smooths the
activation outliers. Gptq (Frantar et al., 2022)
leverages approximate second-order information to
weight quantization. Qlora (Dettmers et al., 2023a)
backpropagates gradients through a frozen, 4-bit

quantized model into Low Rank Adapters. Om-
niQuant (Shao et al., 2023) quantizes LLMs by
optimizing various quantization parameters.

Knowledge Distillation transfers knowledge
from a large model to a smaller one. Distilling
step-by-step (Hsieh et al., 2023) trains smaller
models that outperform LLMs. DISCO (Chen
et al., 2023) distills counterfactual knowledge from
LLMs. SOCRATIC COT (Shridhar et al., 2023)
distills the ability of Chain-of-Thought from LLM:s.
ZEPHYR (Tunstall et al., 2023) applies distilled di-
rect preference optimization to learn a chat model.

Model Pruning refers to the technique for im-
proving the efficiency of models by sparsification
or removing parameters. Non-structured pruning
often involves model sparsity. SparseGPT (Frantar
and Alistarh, 2023) works by reducing the prun-
ing problem to a set of extremely large-scale in-
stances of sparse regression. SpQR (Dettmers et al.,
2023b) involves the identification and isolation of
outlier weights during LLLM sparsification. Struc-
tured pruning primarily discards portions of model
modules. LLM-Pruner (Ma et al., 2023) selectively
removes non-critical structures based on gradient
information. ShearedLLaMA (Xia et al., 2023)
employs targeted structured pruning and dynamic
batch loading to prune the Llama?2.

However, model quantization and sparsification
methods have a significant impact on model perfor-
mance and typically require special hardware sup-
port. Knowledge distillation entails considerable
training costs and is usually task-specific. Existing
structured model pruning methods often disrupt the
inherent structure of the model. In contrast, our
LaCo does not disrupt the model structure during
pruning and is also more concise, while maintain-
ing excellent performance.

6 Conclusion

In this paper, we propose a concise layer-wise struc-
tured pruning method called Layer Collapse, which
involves the collapse of rear model layers into the
preceding layer, facilitating a swift reduction in
model size. Our LaCo does not require special hard-
ware support and preserves the intrinsic structure
of the model. Experimental results demonstrate
that the proposed LaCo significantly outperforms
existing SOTA structured pruning methods. Sub-
sequently, we conduct post-training on the pruned
models, verifying that LaCo effectively inherits
the parameters of the original model and enables



rapid convergence of the pruned model during post-
training. Later, we also discuss our motivation from
the perspective of layer-wise similarity. Finally, we
explore the performance of models pruned by LaCo
at different pruning ratios.

Limitations

Due to LaCo’s pruning process primarily relying on
layer-wise iterations, it cannot directly control the
pruning ratio like previous methods. Instead, it re-
quires tuning hyperparameters such as the represen-
tation similarity threshold 7 for control. In future
work, we will summarize additional experimental
patterns regarding how to set hyperparameters to
achieve a specific pruning ratio.
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A Hyperparameter Settings

LLM ¢ £ H T T
Llama2-7B | 4 1 32 2 065
Llama2-13B | 6 1 40 2 075
Baichuan2-7B | 4 1 32 2 070
Llama2-13B | 6 1 40 2 070

Table 5: Hyperparameter settings for main results.

LLM (Ratio/Lay.) c L H I T
Llama2-7B (12.0%/28) |5 1 32 2 085
Llama2-7B 27.1%/22) |4 1 32 2 0.65
Llama2-7B 45.0%/17) |6 1 32 2 045
Llama2-13B (14.6%/34) | 7 1 40 2 0385
Llama2-13B (24.7%/30) | 6 1 40 2 0.75
Llama2-13B (49.7%/20) | 7 1 40 2 045

Table 6: Hyperparameter settings for varying pruning
ratios.

B Post-Training Implementation Details

For post-training, we utilize the code framework
provided by the LLaMA-Factory repository (hiy-
ouga, 2023) along with DeepSpeed ZeRO-2. The
sequence length is set to 4096 following the default
settings of the Llama2-7B and Baichuan2-7B. We
use Adam optimizer with the learning rate of 2e-4,
where we set the Adam parameters 5; = 0.9 and
B2 = 0.95. The batch size is set to 8 per GPU,
resulting in a total batch size of 32. We configure
the gradient accumulation steps to be 4 and utilize


https://arxiv.org/abs/1904.09679v3
https://arxiv.org/abs/1904.09679v3
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830

a cosine learning rate scheduler. Additionally, we
apply weight decay of 0.1 and set the maximum
gradient normalization to 1.0.

C Supplementary Results
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LU | Pranr [Rato/Lay oy N i pIOA|CHID W3Cs WSC CoOA Baald MMLUCMALU Racen Rocon XSum €3
| Dense* | 0%/32 | 100 100 100 | 100 100 | 100 100 | 100 100 100 100
Llf‘,;;lsaz\LLMPru.\Zio%BZ\ 104.09 79.13 91.10|54.84 97.44 250 [63.76 78.11 | 50.81 79.25 |63.53 67.42 58.49 58.57
[SliceGPT| 26.4%/32 | 96.12 70.46 84.69|45.16 97.44 50.00|62.04 54.22 | 62.98 79.63 |59.34 65.34 24.85 90.86
| LaCo [27.1%/22|104.40 78.05 89.28/78.50 107.68 65.00 |68.55 90.66 | 57.60 79.22 |63.67 71.22 79.47 90.61
| Dense* | 0%/40 | 100 100 100 | 100 100 | 100 100 | 100 100 100 100
Lf“l‘g‘é‘z\LLMPru.\24.4%/4o\ 100.12 90.55 96.17/67.28 79.24 0.00 |76.01 7891 | 4532 63.78 |38.72 36.65 81.37 68.05
|SliceGPT| 23.6%/40 | 90.39 74.45 86.61|36.45 71.70 57.58(70.63 52.95 | 66.76 66.57 |40.34 39.89 2237 88.23
| LaCo |24.6%/30| 99.61 86.05 93.18|75.70 103.77 56.07 | 78.70 89.48 | 82.56 84.20 [93.90 93.87 61.33 94.57
| Dense* | 0%/32 | 100 100 100 | 100 100 | 100 100 | 100 100 100 100
Bf‘;]cf' ILLMPru.| 24.2%/32| 96.73 79.43 94.29/84.43 130.23 0.00 |75.75 96.67 | 45.95 45.11 |41.73 43.65 76.68 64.51
|SliceGPT| 22.2%/32 | 96.10 37.43 66.08/17.96 88.37 0.00 |30.99 62.09 | 46.41 4434 [44.71 44.06 0.00 41.18
| LaCo |24.2%/23| 98.89 77.38 89.93|92.22 102.32 42.42|74.85 88.70 | 58.12 54.86 |55.08 54.31 57.73 78.78
| Dense* | 0%/40 | 100 100 100 | 100 100 | 100 100 | 100 100 100 100
B‘i“;é |LLMPru.|24.3%/40 | 101.78 75.34 91.99/87.50 90.69 0.00 |59.18 84.39 | 39.43  41.10 |31.47 31.35 54.79 60.77
|SliceGPT| 22.8%/40 | 96.57 36.36 65.36/12.50 88.37 0.00 |27.47 56.46 | 39.02 41.23 [32.05 31.22 0.00 38.07
| LaCo [24.7%/30| 99.46 85.39 88.23/92.26 106.96 95.46 | 84.53 93.06 | 87.32 87.56 |84.61 83.84 49.38 93.08

Table 7: The percentage of each model’s score on each benchmark relative to the score of Dense* in the main results.

Prompt

Document: The 18-year-old scored 88.40 to make
history in what was the fifth and the final stop
of the World Cup season.\nShe came ahead of
Sweden’s Emma Dahlstrom and Swiss Mathilde
Gremaud.\nBoston-born Atkin, who initially com-
peted for the US before switching to Great Britain
aged 15, was making her 15th appearance at a
World Cup event.\nAtkin will be competing at the
Freestyle World Championships in Sierra Nevada,
Spain (9-19 March). The event will be live on
the BBC Sport website, app, connected TV and
red button.\nBased on the previous text, provide a
brief single summary:

Pruner

\ Generated Responses

LLMPru.

| \m\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n

SliceGPT

of the 19900s of the 1900s of the 1900s of the
1900s.

LaCo

Boston-born Atkin, who initially competed for
the US before switching to Britain aged 15, was
making her 15th appearance at a World Cup
event.\nThe 18-year-old scored 88.40 to make his-
tory in what was the fifth and the final stop of the
World Cup season.

Table 8: A response on the Xsum benchmark from

Llama2-7B after pruning with different pruners.



LLM Method Reasoning Language Knowledge | Examination Understanding
CMNLI HeSw PIQA|CHID WSCp WSCg|CoQA BoolQIMMLU CMMLU Racey Racem XSum C3
| Dense” | 32.98 71.35 78.18|46.04 37.50 38.46|66.67 70.67| 45.92 31.86 |35.51 33.15 19.68 43.78
Llf‘,;;;az | LaCo | 34.43 55.69 69.80|36.14 40.38 25.00|45.70 64.07| 26.45 2524 |22.61 23.61 15.64 39.67
LaCo. 34.92 61.88 73.18‘38.12 36.54 34.62‘57.49 66.21‘ 2947 2533 ‘28.33 29.87 10.02 38.58
+post train
LaCo
+post train| 33.80 45.35 65.07|23.27 36.54 0.96 |38.49 60.43| 26.07 25.37 |23.07 22.98 15.48 36.71
+re prune
| Dense” | 33.37 67.56 76.17|82.67 41.35 63.46|63.14 63.30| 54.25 56.95 |52.63 51.04 20.84 64.55
Balf’l;;anz‘ LaCo | 33.00 52.28 68.50|76.24 42.31 26.92|47.26 56.15| 31.53  31.24 |28.99 27.72 12.03 50.85
LaCo. 32.92 52.67 69.42‘78.22 40.38 3.85 ‘52.01 55.93‘ 28.72 2725 ‘25.01 26.25 15.82 58.03
+post train

Table 9: The detailed scores across all benchmarks of pruned models, post-trained models, as well as post-trained
models followed by re-pruning.

LLM |Ratio/Lay. Reasoning Language Knowledge | Examination Understanding
CMNLI HeSw PIQA|CHID WSCp WSCg|CoQA BoolQIMMLU CMMLU Racey Racey XSum C3
| 0%/32 | 32.98 71.3578.18]46.04 37.50 38.46|66.67 70.67| 45.92 31.86 |35.51 33.15 19.68 43.78
Llf‘;;;az\ 12.0%/28 | 32.99 55.91 74.48|42.57 36.54 29.81|52.58 60.12| 25.59 27.10 |22.01 21.73 17.97 36.44
|27.1%/22| 34.43 55.69 69.80|36.14 40.38 25.00 |45.70 64.07 | 2645 2524 |22.61 23.61 15.64 39.67
|45.0%/17| 32.58 38.33 60.07|20.30 36.54 0.96 |34.73 61.38| 23.98 25.59 |22.38 23.26 1.28 38.85
| 0%/40 | 32.99 74.8379.71|52.97 50.96 63.46|66.91 71.50| 55.63 38.74 |58.03 60.24 23.56 47.51
L!T;];IZ\ 14.6%/34| 32.99 71.88 76.82|51.98 63.46 48.08|63.72 63.43| 53.97 38.23 |59.35 61.49 21.32 47.67
|24.7%/30| 32.86 64.39 74.27|40.10 52.88 35.58 |52.66 63.98| 45.93 32.62 |54.49 56.55 14.45 44.93
|49.7%/20| 34.22 46.55 63.82[13.37 56.73 10.58|36.28 62.23 | 38.41 27.24 |51.97 56.41 1.56 36.38

Table 10: The detailed results of models pruned at different pruning ratios using LaCo across all benchmarks.
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