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Joint-Embedding Predictive Architecture (JEPA) has emerged as a promising self-supervised approach
that learns by leveraging a world model. While previously limited to predicting missing parts of an
input, we explore how to generalize the JEPA prediction task to a broader set of corruptions. We
introduce Image World Models, an approach that goes beyond masked image modeling and learns
to predict the effect of global photometric transformations in latent space. We study the recipe of
learning performant IWMs and show that it relies on three key aspects: conditioning, prediction
difficulty, and capacity. Additionally, we show that the predictive world model learned by IWM can
be adapted through finetuning to solve diverse tasks; a fine-tuned IWM world model matches or
surpasses the performance of previous self-supervised methods. Finally, we show that learning with
an IWM allows one to control the abstraction level of the learned representations, learning invariant
representations such as contrastive methods, or equivariant representations such as masked image
modelling.
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1 Introduction

Learning and leveraging world models is common
practice in reinforcement learning (RL), with demon-
strable success in the last few years in particular Ha
and Schmidhuber (2018); Hafner et al. (2019, 2023).
World models are commonly learned by training a
network to predict the consequence of an action, ei-
ther in input space (Yang et al., 2023), or in latent
space (Hu et al., 2023; Hafner et al., 2023). Given
such a broad view of world modelling, we seek to ex-
plore whether learning and leveraging world models
can also be benificial in visual representation learning.

A wide family of self-supervised learning approaches
are based on encoder-predictor architectures, wherein
the encoder-predictor networks are trained to pre-
dict transformations of the data; e.g., masked image
modelling (Bao et al., 2021; He et al., 2021), joint-
embedding architectures (Grill et al., 2020; Xie et al.,
2022; Assran et al., 2023; Baevski et al., 2022), or
equivariant prediction objectives (Gupta et al., 2023;
Garrido et al., 2023b). If we regard transformations
of the data as “actions,” then we can easily relate self-
supervised learning approaches to world-modelling
in reinforcement learning; see figure 2.

For instance, the decoder network in masked au-
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Figure 1 Visualisation of predictions in latent space with alearned
Image World Model. We apply an action on a source image
in latent space and retrieve the nearest neighbour of the pre-
dicted representation in a bank of 256 images. We see that
IWM is capable of modeling transformations and undo cor-
ruptions, showing an understanding of the underlying image
transformations. Image from: ai.meta.com/blog/yann-lecun-
advances-in-ai-research/

toencoders (He et al., 2021) can be thought of as a
generative image world model, which learns to infer
the effect of the “masking action” 7 (a) on an image
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Figure 2 Multiple families of methods with related architectures can be distinguished, in which the conditioning or not of their
world model is a key distinction. Generative World Models are trained to invert a transformation in input space, leveraging
an autoencoder framework. Methods for world modeling and representation learning can be instantiated in this way. Joint
Embedding methods get rid of the world model but operate in latent space by encoding what is common between transformed
inputs. It is the main class of SSL methods. JEPA World Models can be seen as a more general framework where a world model is
trained in latent space. This family has been very successful both in reinforcement learning and in representation learning, and is

where Image World Models (IWM) falls.

y; in this case, the transformation parameters a (lo-
cations of masked image patches), are also fed to the
decoder network. Methods based on joint-embedding
predictive architectures (JEPAs), such as I-JEPA (As-
sran et al., 2023) or data2vec (Baevski et al., 2022),
operate similarly, but can be seen as learning a latent
image world model, which learns to infer the effect
of the masking action on the representation of an
image. If one does not condition the predictor on
the transformation parameters, then the best we can
hope for is learning representations that are invariant
to the data transformations, as in BYOL (Grill et al.,
2020) and SimSiam (Chen and He, 2020), wherein
the image transformations correspond to various pho-
tometric and geometric data augmentations.

However, despite some of the apparent similarities
between world modelling in reinforcement learn-
ing and self-supervised learning from images, the
learned world model in reinforcement learning is typ-
ically leveraged in downstream tasks, e.g., for plan-
ning (Hansen et al., 2022). In contrast, the learned
world model in self-supervised learning is typically
discarded after pretraining, as the main focus is often
on the representation quality of the learned encoder
network. This stems from the fact that most down-
stream tasks in computer vision are unrelated to the
world modeling task. Common tasks of interest focus
on discriminative aspects and as such, even when
the predictor learns useful information, it is simply
discarded. We postulate that discarding the world
model in representation learning is wasteful, and that
just like in RL, we can reuse this world model for
downstream tasks. This motivates us to study, in

more depth, learning world models as a paradigm for
representation learning. We thus introduce Image
World Models (IWM, illustrated to the right of fig-
ure 2) as a way to learn both good representations
and strong reusable world models. IWM is based on
JEPA and extends the usual latent inpainting to also
include photometric transformations, allowing us to
demonstrate the key aspects in learning a capable
world model, which include the choice of predictor
conditioning, the strength of the transformations,
and the capacity of the world model.

We then focus on leveraging the learned world model
for downstream tasks, and find that it can be lever-
aged through finetuning. Specifically, we find that
finetuning the world model on top of the frozen en-
coder for downstream tasks provides improved perfor-
mance over encoder finetuning; this is also achieved
at a fraction of the cost and number of finetuned
parameters. Moreover, only the world model learned
by IWM exhibits this behavior; finetuning a ran-
domly initialized network of the same architecture as
the predictor does not provide such a performance
improvement. This suggests that the world model
should be a key part of the inference process, in-
stead of being discarded. Inspired by instruction
tuning (Wei et al., 2022; Zhang et al., 2023), we fur-
ther show that the world model can be finetuned
to solve multiple tasks at once, further improving
efficiency.

Our study reveals another key aspect of representa-
tion learning with world models: the capacity given
to the world model has a direct influence on the



level of abstraction of the learned representations.
Intuitively, if the predictor is the identity (i.e., no
predictor, middle of figure 2), the network will cap-
ture high level semantic information, as it will only
learn to encode what is shared between the input y
and its transformation z. This is the driving force be-
hind the representation quality of contrastive learning,
where transformations are selected to only preserve
the semantics of the image. On the other hand, as
the predictor has more capacity and can effectively
invert the effect of the transformations, the output
of the encoder can retain more information about its
input. These two ideas are at the core of equivariant
representation learning; a predictor that can apply
transformations effectively is equivariant, whereas a
predictor that cannot is invariant. We find that a
world model that is invariant to transformations per-
forms better in linear evaluation, whereas one that is
equivariant correlates with better world model fine-
tuning. This gives a tradeoff between ease of adaption
and raw performance. As such, learning representa-
tions by learning a world model gives us flexibility in
the properties of the representations, making this an
attractive representation learning framework.

Our contributions can be summarized as follows:

e We show how to leverage JEPAs to learn an
Image World Model (IWM). The key aspects are:
complexity of transformations, conditioning on
transformations, and capacity of the predictor.

e We show that equivariant world models can be
leveraged for discriminative tasks. Finetuning
the predictor leads to better performance com-
pared to encoder finetuning, at a fraction of the
cost. Inspired by instruction tuning, we also
demonstrate that it can be finetuned on several
tasks at once.

e We show that controlling the capabilities of the
world model gives us representations with differ-
ent properties. An invariant world model gives
us more abstract representations and performs
better in linear evaluation, akin to contrastive
learning. An equivariant world model preserves
more information about the input, giving better
peak performance with predictor finetuning.

2 Related works

2.1 Augmentation invariant Self-Supervised
Learning

At the core of contrastive methods lies augmentation
invariance. Multiple augmented views of an image
should lead to the same representation in latent space.
The core of these methods is thus in how to avoid

these representations collapsing. Sample-contrastive
methods (Chen et al., 2020a; He et al., 2020; Chen
et al., 2020b; Caron et al., 2021; Chen et al., 2021; Yeh
et al., 2021; HaoChen et al., 2021; Oquab et al., 2023)
avoid this phenomenon by pushing away represen-
tations coming from other data points. Dimension-
contrastive methods (Bardes et al., 2021; Zbontar
et al., 2021; Ermolov et al., 2021; Li et al., 2022;
Bardes et al., 2022) avoid collapse by considering the
representations as a whole and encouraging maximiza-
tion of information content. Both dimension- and
sample-contrastive methods have been shown to lead
to very similar representations (Garrido et al., 2023a).
Prediction based methods (Grill et al., 2020; Chen
and He, 2020) learn by predicting the augmented
representations, but they also lead to invariant rep-
resentations due to a lack of conditioning on the
transformations.

2.2 World modeling in visual representation
learning

While world modeling is a successful paradigm in
reinforcement learning Hafner et al. (2019, 2023) or
video prediction Yang et al. (2023); Hu et al. (2023),
it has yet to show clear benefits in representation
learning. However, multiple families of approaches
can be reframed in light of this. Equivariant self-
supervised learning methods (Devillers and Lefort,
2022; Park et al., 2022; Garrido et al., 2023b; Gupta
et al., 2023; Dangovski et al., 2021) aim to predict
transformations of data when such transformations
form a group. Masked Image Modeling He et al.
(2021); Bao et al. (2021); El-Nouby et al. (2024);
Xie et al. (2022) learns representations by predicting
masked parts of the image. While these approaches
predict in pixel space, their decoders can be seen as
instantiations of world models. Similarly, JEPAs (As-
sran et al., 2023; Baevski et al., 2022) predict masked
parts of the image, but in the latent space. Re-
cently, generative approaches have been applied to
representation learning Hudson et al. (2023); Clark
and Jaini (2023); Chen et al. (2024), and while these
approaches seem promising, their performance still re-
mains below contrastive or MIM approaches. Recent
work has also shown negative correlations between
generation quality and representation quality (Chen
et al., 2024). One shared aspect among these works is
that the world model (predictor or decoder) is either
discarded for evaluations, or only used to augment
data (Hudson et al., 2023). We propose to go beyond
these practices and show that we can learn a world
model that is reusable for downstream tasks while
still learning high-quality representations.



3 Method

We now describe Image World Models (IWM). Tt
follows a Joint Embedding Predictive Architecture
framework (LeCun, 2022) akin to I[JEPA (Assran
et al., 2023). In this framework, the predictor
is the instantiation of the world model. We con-
sider a world model to be capable if it can apply
transformations in latent space, and thus learns
equivariant representations. As such, we call a
capable world model equivariant ' and a poor world
model invariant.

An appealing aspect of using JEPAs is that ap-
proaches which learn equivariant representations
using contrastive methods often have to rely on an
invariance loss to increase representation quality,
whether explicitly (Gupta et al., 2023; Garrido et al.,
2023b), or implicitly (Chavhan et al., 2023a). On
the other hand, a JEPA style approach does not
have this drawback, as the semantic aspect of the
representation is learned through latent inpainting.
Working in latent space further allows the network to
remove unnecessary information, or that which is too
hard to predict. This makes the JEPA formulation
attractive since, for reconstructive methods, the
quality of the reconstruction is not necessarily
correlated with representation quality Chen et al.
(2024).

To train IWM, the first step is to generate source
and target views — x and y respectively in figure 2
— from an image 1.

Target y. The target view is generated by applying
a random horizontal flip, a crop, and color jitter
(brightness, contrast, saturation, hue) to the origi-
nal image I. No destructive augmentations such as
grayscale are applied on the target to ensure that
the target has as much information as possible. We
further elaborate on this choice in appendix C.

Source z. For the source view, we start from the
target y which we further transform. We first apply
another color jitter, as well as destructive augmen-
tations: grayscale, blur and solarization. This set of
augmentations is the same as the one used in con-
trastive SSL. Finally, we also mask parts of the image
following I-JEPA. We define our mask M, (a set of
indices) as the union of 4 rectangular masks. Confer
appendix A for exact implementation details.

Action a. We denote by a,_,, the transformation pa-
rameters associated with the transformation of = to
vy, i.e., the invert of the initial transformation process.

IThis is an abuse of language as not all considered trans-
formations form a group, but it is used for clarity.

@z, contains information about the color jitter dif-
ference between x and y as well as information on
whether or not each destructive augmentation was
applied.

World modeling with ps. The source and target are
then fed respectively through an encoder fy and its
exponential moving average fg:MA. This gives us
representations z, = fp(z) and z, = fE"A(y). The
use of the EMA network is crucial to avoid collapsed
solutions. To condition the predictor, acting as our
world model, it is fed with geometric information
about the target in the form of mask tokens as well
as az—y. We denote these mask tokens as mg, which
correspond to the positions in M. The predictor pg
then takes as input the embedded source patches z.,
transformation parameters a,_,, and mask tokens m,.
Its objective is then to match pg (23, @g—y, Ma) = 2y
to zy.

Loss. The loss function used is a squared L2 distance
between the predictions 2, and their targets z,:

Liz,y) = Y lps (fo(@), aumsy, ma), =[5 W)ill3.
ieME

3.1 Architecture and nomenclature

Our encoder is a Vision Transformer (Dosovitskiy
et al., 2021), in particular we use the ViT-B/16 archi-
tecture. Our predictor is based on the same architec-
ture with different depth and embedding dimension.
We denote instances of IWM as IWM?Y where X
is the depth of the predictor, Y its embedding di-
mension, and Z is either Inv or Equi depending on
the capabilities of the world model. For example
IWM1E§‘§184 means that the predictor is 18 layers deep,
with 384 dimensional embeddings and exhibits equiv-
ariant behavior, i.e., has learned a versatile world
model.

4 Learning an Image World Model for
representation learning

4.1 Evaluating the quality of the world model

As discussed previously, learning equivariant represen-
tations and learning a world model are closely related
problems. As such, we can borrow metrics from the
equivariance literature to evaluate the quality of a
trained world model. We rely on Mean Reciprocal
Rank (MRR) (Kipf et al., 2019) as our main metric.
To compute it, we generate a bank of augmented
target images (256 in practice). We feed the repre-
sentation of the clean image through the predictor



Table 1 Influence of predictor conditioning on the quality of the
world model. Both Sequence and Feature conditioning lead to
good world models .Gray is our default setting.

Feature

0.79

Conditioning: None Sequence

MRR 0.00 0.82

with the goal of predicting the target image. We
then compute the distance between the prediction
and the augmented representation bank from which
we get the rank of the target in this NN-graph. Aver-
aging the reciprocal ranks over multiple images and
transformations gives us MRR which tells us about
the quality of the world model. A MRR close to
1 means that the world model is able to apply the
transformation, on the contrary a MRR close to 0
means that it cannot.

4.2 Learning a strong Image World Model

In order to build a performant IWM, we isolate three
key aspects: conditioning the predictor on transfor-
mations (or actions), controlling the complexity of
the transformations, and controlling the capacity of
the predictor. We show that not caring properly for
either of those leads to invariant representations.

World model conditioning. We study two approaches
to condition the predictor on the transformation in-
formation.

Sequence conditioning. One approach is simply to add
tokens representing the transformation to the input of
the predictor. Although this seems straightforward,
it needs to be implemented in a way that breaks the
permutation equivariance of the transformer predic-
tor. To do so, every token is fed through a unique
linear layer that allows the network to transform the
information in a way that can be disambiguated by
the predictor.

Feature conditioning. Another option is to mix the
information between the transformation and mask
tokens by adding the conditioning as extra dimen-
sions, then feeding the mask tokens through a 1x1
convolutional neural network to mix the information
in the mask tokens and map back to the right dimen-
sionality.

As we can see in Table 1, no conditioning leads to
a world model that cannot apply transformations
whereas both conditioning using the sequence or fea-
ture axes leads to good world models. We use the
feature conditioning in practice as it leads to higher
downstream performance.

Transformation complexity. We rely on data augmen-
tation as used in contrastive approaches, consisting
of color jitter (brightness, hue, contrast, saturation),

Table 2 Impact of predictor architecture and transformations
on MRR. Learning an effective world model requires complex
transformations and adequate predictor capacity. Gray is our
default setting. Red and Green respectively indicate invariant
and equivariant behavior.

Predictor: I-JEPA IWM
(depth, dim.): (12,384) (12,384) (18,384)
Jitter 0.00 0.11

+ Destructive 0.00 0.09 0.79
+ Strong Jitter 0.00 0.81 0.85

grayscale, blur, and solarization. We refer to the
last three as destructive since they remove informa-
tion. Beyond the set of transformations modeled,
their strength must also be adequate to learn a use-
ful world model. If the prediction task is too easy,
then the predictor will not learn anything useful. As
presented in Table 2, the stronger the augmentations,
the easier it is to learn a strong world model. We
provide more detailed ablations on the augmentations
in Appendix C, where we see the trend continuing
on a wider range of augmentation scenarios.

World model capacity. If the transformation is com-
plex, the predictor needs more capacity to be able
to apply it, motivating capacity as a crucial factor
in learning Image World Models. As we can see in
Table 2, a deeper predictor enables us to learn a
strong world model on a wider range of augmenta-
tions, and is key to the success of IWM. We study
in more detail the influence of depth on achieving a
good world model in appendix C. For 12 layers, jitter
equivariance is achieved 1 out of 5 times whereas for
the 18 layers, it is achieved 4 out of 5 times. As such,
predictor capacity is a key component of a strong
world model.

4.3 \Visualizing predictions.

In the same way that we computed MRR, we can
compare the predicted representations to a bank of
transformed images and look at the image associated
to the prediction’s nearest neighbor. As we see in
Figure 1 the world model learned by IWM is able to
properly apply transformations in latent space. We
can however see some inaccuracies when inverting
grayscale as it is not properly invertible. These visu-
alisations help reinforce the fact that IWM is able to
learn strong world models for image transformations.
Confer appendix I for more visualizations.



Table 3 How to predict for predictor finetuning. Using the
teacher improves performance, and the exact prediction task is
not crucial. Null latents are more flexible and perform better.
For better efficiency, a full prediction is not needed but leads
to a small drop in performance. Gray is our default setting.

Setting ImageNet Top-1 (%) Gap
Default 82.9 -

+ Teacher 83.2 + 0.3
+ Null latents 83.3 + 0.1
+ Pred only one token 82.8 -0.5

5 Leveraging world models for down-
stream tasks

A limitation of world models learned on images is
that the task they solve is not aligned with most
downstream tasks. We showed that IWM can apply
color jitter or colorize images, but these are not the
tasks that drive applications of computer vision. This
is in contrast with LLMs where predicting the next
token is one of the main applications of such mod-
els. We thus study how to leverage a world model
in vision, for tasks that go beyond applying transfor-
mations. We focus on discriminative tasks such as
image classification and image segmentation.

5.1 Predictor finetuning

For any task, the evaluation head needs to under-
stand the learned latent space and leverage it to solve
the problem at hand. This is something our learned
predictor can do, suggesting that it has learned use-
ful information that is not necessarily present in the
encoder. However, since the predictor is trained to
predict another valid representation, its output has
no reason to lead to better downstream performance
if used as is. This is why the predictor needs to
be finetuned to solve discriminative tasks. We thus
focus on comparisons with finetuning protocols, fol-
lowing He et al. (2021). All methods studied are
pretrained and evaluated on ImageNet Deng et al.
(2009) and use ViT-B/16 as encoders.

Prediction task. When finetuning the predictor, we
still need to use it for a prediction task. In Table 3,
we study various ways to define the prediction task
and how it impacts performance. The first aspect
we notice is that using the teacher network improves
performance over the student. Using a random trans-
formation or not is not an important factor, and the
most important one is to predict another full image.
This makes the evaluation more flexible as we do
not have to reuse the pretraining objective for our
evaluation. Using a CLS token to aggregate infor-
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Figure 3 Finetuning efficiency. When taking into account
the number of finetuned parameters, predictor finetuning is
significantly more efficient than finetuning the encoder.

mation instead of a full image prediction is also a
valid strategy, though it lowers the performance by
half a point. This techniques has the advantage of
being cheaper (N + 1 tokens vs 2N) so it can be a
good alternative depending on the use case. Over-
all, the simplest approach is the best: predicting an
untransformed version of the full image. This makes
the finetuning protocol easily reusable as it is not
dependent on the pretraining task. We provide more
detailed ablations in appendix D.

General Results. In Table 4, we compare predictor
finetuning to encoder finetuning and end-to-end fine-
tuning of both the predictor and encoder, using ViT-
B/16 for the encoder. We see that IWM maintains
or improves performance over I-JEPA and that an
invariant behavior is better in encoder finetuning.
Interestingly, predictor finetuning of the equivariant
IWM is able to match the performance of finetuning
of the invariant model’s encoder. This shows that
the protocol can be competitive as it trades param-
eters at inference time for a more computationally
friendly adaptation. While this evaluation increases
the number of parameters used at inference time, it
still amortizes the forward pass through the back-
bone, something that full finetuning does not do. As
such, as soon as multiple tasks are considered, using
the finetuned predictor provides a higher throughput
than regular finetuning.

When comparing the use of a randomly initialized
predictor (i.e., a large evaluation head) versus a pre-
trained predictor, we see negligible gains for MAE.
This suggests that the world model learned by MAE
is not better than a randomly initialized network for
classification. For I-JEPA and IWM with an invari-
ant world model, we see gains in performance lower
than 1 point, suggesting that the world model is not
powerful enough to be leveraged. However, when
looking at IWM with an equivariant world model, we
see a gain of 1.8 points over a random predictor. This
shows that the predictor has learned useful informa-
tion and properties that bring additional benefit to



Table 4 Finetuning evaluations on ImageNet-1k. We evaluate prediction based methods by finetuning their encoder, by keeping
the encoder frozen and finetuning their predictive world model or by finetuning both. Finetuning the world model is highly
effective with IWM when it exhibits an equivariant behavior. This behavior is absent or less clear with other methods, showing

the importance of a strong world model.

No predictor

Frozen encoder, tuned predictor

Method Epochs End to end
Encoder Random Init. Pretrained
MAE 300 82.7 82.4 82.7 (4+0.3) 82.3
1600 83.6 83.0 83.1 (+0.1) 83.3
I-JEPA 300 83.0 79.1 80.0 82.0
IWMIE’;;M 300 83.3 80.5 81.3 82.7
IVVI\/IlEg;"‘;84 300 82.9 81.5 83.3 (1.8) 84.4

Table 5 Peak performance achieved from a single pretraining
instance. We compare ImageNet Top-1 accuracy with a frozen
encoder or when allowing any evaluation head with any proto-
col, finetuning or not, with a predictor on top of the encoder
or not.

Table 6 Finetuning for segmentation on ADE20k. Similar
to image classification, we observe that predictor finetuning
improves performance and outperforms encoder finetuning.

Method Encoder Predictor End to end
Method Epochs  Frozen Encoder Any protocol I-JEPA 44.2 45.4 45.1
DINO 1600 82.0 82.8 IWMS5g, ~ 45.6 45.7 46.5
MOCOvV3 300 76.4 83.2 IWMPs, 442 46.8 47.0
iBOT 1600 83.0 84.0 :
MAE 1600 83.1 83.6
I-JEPA 300 80.0 82.0 provide additional details in Appendix A.2.
IWM35e, 300 81.3 83.3 Eefici I Fi 5 tudv the officd ;
IWM?Q‘;; X 300 83.3 84.4 iciency. In Figure 3, we study the efficiency o

what the encoder has learned.

The performance can be pushed further by finetuning
end-to-end both the encoder and predictor, and IWM
is able to outperform every other finetuning proto-
cols. This allows us to get more performance out of
a single pretraining since the world model is always
trained. We hypothesize that the lack of performance
for most approaches on end-to-end finetuning comes
from the optimization complexity of finetuning a part
of the network (encoder) while training from scratch
another part (the predictor). We see in Table 5 that
when aggregating the performance over all protocols,
leveraging our IWM leads to the best performance
with a frozen encoder, that is when allowed to lever-
age every part of the pretraining. Confer Appendix A
for detailed performances.

Image Segmentation. We study in Table 6 the perfor-
mance of I-JEPA and IWM on an image segmentation
task on ADE20k. We observe similar trends as in
image classification where the invariant model leads
to the best encoder. However, finetuning the pre-
dictor with an equivariant model leads to significant
gain over it, outperforming encoder finetuning by a
large margin. Again, we observe gains in end-to-end
finetuning. This further validates the potential of our
IWM to be leveraged for a wide range of tasks. We

predictor finetuning compared to encoder finetuning.
We see that when the number of parameters is com-
parable, and at multiple predictor sizes, predictor
finetuning with IWM outperforms encoder finetuning
by around 1 point compared to MAE, and by 1.5
points over IWM. This means that predictor finetun-
ing is not only is a competitive protocol performance
wise, but also with respect to efficiency of adaptation.
We further study the behavior of IWM with a ViT-
L/16 in section E. When comparing the end-to-end
finetuning of a ViT-B with encoder finetuning of a
ViT-L, we observe a gain in performance (84.4% vs
84.3%) with a fraction of the parameters (121M vs
307 M). This further shows how efficient leveraging
the world model learned by IWM is, and that reusing
all parts of your pretraining can prove as effective as
scaling the encoder.

5.2 Multitask predictor tuning

We previously discussed efficiency gains when com-
pared to encoder finetuning, but can improve effi-
ciency even further. One of the main goal of repre-
sentation learning is to obtain representations that
can be used for a variety of tasks. And just like the
predictor was trained to solve a variety of task (col-
orization, inpainting, changing color) we show that
it can be finetuned on multiple tasks, inspired by
prefix tuning (Li and Liang, 2021) and instruction



Table 7 Multi-task finetuning. Finetuning the predictor on
multiple tasks at once performs similarly as finetuning it
on each task separately. This enables the use of a single
prediction head for multiple task, amortizing its cost.

Dataset Single-task  Multi-task  Difference
ImageNet 80.8 79.6 -1.2
iNat18 72.4 72.0

SUN397 75.6 78.2 2.6
Places205 64.8 64.1

Average 73.4 73.5

Table 8 Linear and attentive probing performance on ImageNet-
1k. IVVMI“V performs similarly to contrastive methods and
IWMPEAY t6 mask modeling ones.

Method Effective Epochs Linear Attentive
MoCoV3 300 76.3 76.4
MAE 300 60.2 73.5
MAE 1600 68.0 76.0
I-JEPA 300 70.0 75.0
TWM 50, 300 74.5 77.0
TWMise, 300 67.5 75.1

tuning Wei et al. (2022); Zhang et al. (2023) in LLMs.
The general idea, that we illustrate graphically in sup-
plementary Figure S2, is to give new learned tokens
to the predictor to indicate which task it is trying to
solve. This is reminiscent of DyTox Douillard et al.
(2022) which uses task tokens for continual learning.
For each task, we thus have a task token, as well as
a task specific head and/or loss function. All of the
task losses are then combined, and the predictor, as
well as task specific heads, are updated. We study
a simple scenario where the batch is evenly split be-
tween tasks, noting that other sampling strategies
may lead to further improved performance.

We evaluate in Table 7 IVVM1135_33"?’,184 (pretrained on Ima-
geNet) on ImageNet, iNaturalist18 (Horn et al., 2018),
SUN397 (Xiao et al., 2010), and Places205 (Zhou
et al., 2014). For each task we train a single-task
baseline where the total number of iterations is iden-
tical to the multi-task training. As such, training all
four single-task baselines has exactly the same cost
as the multi-task, although it leads to four different
models instead of one. The multi-task predictor is
able to achieve similar performance as the single-
task predictors, with a moderate drop on most tasks
but a significant increase in performance on SUN397.
On average it achieves the same performance as the
single-task predictors. This further demonstrates
the efficiency gains of leveraging good world models,
where the parameters are now shared across all tasks,
making predictor finetuning lightweight at inference
time for every task.

Overall, when a good world model is learned, it can
be reused for downstream tasks by finetuning it. This
leads to performance rivaling with encoder-finetuning
at a fraction of the cost. It can be made even more
efficient by doing a multi-task finetuning, highlighting
the versatility of this approach.

6 Image World Models enable flexible
representations

To complete our analysis of IWM for representation
learning, we study how it performs on lightweight
evaluation protocols that are commonly used in self-
supervised learning. We focus on linear Chen et al.
(2021) and attentive probing Chen et al. (2023).

As we see in Table 8, when IWM learns an invariant
world model, it achieves a behavior akin to contrastive
approaches such as MoCov3 with significant perfor-
mance gains in linear evaluation compared to MIM
or other JEPA based approaches. Similarly, when
IWM learns an equivariant world model, its behavior
is akin to MIM methods such as MAE with lower
performance in linear evaluation but more competi-
tive performance in attentive probing.

This suggests that a big difference between methods
is not necessarily in the quality of the representation
but in their abstraction level, i.e., how easy it is to
extract information from them. Linear probing be-
ing one of the simplest evaluations, attentive being
slightly more elaborate and finetuning being a more
complex protocol.

In Figure 4, we see clear links between most suited
evaluation protocols and equivariance of the world
model. More invariant world models excel in linear
evaluation and equivariant world models shine with
larger evaluation heads such as in predictor finetun-
ing. We also note that the richer representations
stemming from equivariant world models lead to bet-
ter performance on OOD datasets(see appendix F).
This allows us to place families of approaches on a
spectrum of representation abstraction in Figure 5.
Contrastive methods occupy the high abstraction end
of the spectrum, with information that is easily ex-
tractible with a simple protocol. However they suffer
from lower peak performance when ignoring the adap-
tation cost, as seen in Table 5. On the opposite end
lies Masked Image Modeling, which offers stronger
performance with complex evaluations such as fine-
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Figure 4 While the level of equivariance influences perfor-
mance in Linear and Predictor finetuning setting, it is hardly
correlated to Attentive probing. This suggests that there is a
trade-off in terms of the level of abstraction of the representa-
tion, and that different evaluation protocols evaluate different
properties.
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Figure 5 Image World Models allow representation modularity.
Different families of methods offer representations with differ-
ent properties, but IWM allows exploring the whole spectrum.

tuning but suffers in linear probing as information is
not as easily accessible. By varying the equivariance
of the world model, IWM is able to occupy the spec-
trum in between contrastive approaches and MIM, as
we can see in Figure 4 and Table 8 with TWM]%'s5,

and IWM%{% 4 being the two extremes of the IWM
spectrum.

This spectrum can be summarized by the SSL ethos
of "Learning what is predictible". Learning with a
weak world model means that it cannot model the
world properly and the encoder removes the informa-
tion that cannot be predicted. On the other hand, if
the world model is very powerful, the representation
does not need to be as abstract or semantic as it can
find a way to predict representations in any situation.
This means that learning a world model offers a mea-
surable way to control the level of abstraction of the
representations.

7 Conclusionand future perspectives

We introduced IWM, an approach to learn self-
supervised visual representations with world mod-
els. With an in-depth study, we provided guidelines
and key components for learning a good image world
model. Conditioning the world model with the im-
age transformation is crucial to avoid collapsing to
classical SSL behavior. Using strong transformations
is also key to ensure that the world model learns to

model more complex behavior and be useful. Finally,
enough capacity is needed for modeling complex be-
haviors. We showed that only a capable world model
can be reused for discriminative task. This led to
our predictor finetuning protocol that matches en-
coder finetuning at a fraction of the cost, showing
that world models are versatile evaluation heads. We
further adapted it to solve multiple tasks at once
without losing performance. Finally, we studied how
learning a world model impacts representation quality.
A capable world model learns rich representations
that improve performance on downstream tasks such
as image classification and semantic segmentation.
Additionally, learning an invariant world model led
to better representations for linear evaluation. While
MIM and Contrastive approaches are two ends of
a spectrum in terms of representation abstraction,
Image World Models allow us to interpolate between
them. As such, we believe that learning image world
models is a very promising framework for visual rep-
resentation learning.

8 Broaderimpact statement

This paper presents work whose goal is to advance the
field of Machine Learning. There are many potential
societal consequences of our work, none of which we
feel must be specifically highlighted here.
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Figure S1 IWM (Image World Model). Starting from an image, two augmented views are produced: the source and
the target. The source view is partially masked to form the context and then encoded to be used as conditioning
for the world model, instantiated by the predictor. The target is encoded through an exponential moving average
of the encoder, and target positions are sampled as the masked patches of the source image. Conditioned on the
transformation parameters between the source and target, the encoded source image, and the positions to predict, the
predictor is trained to predict the target representations.

A Experimental details

A1 Pretraining
We provide a more detailed architecture for IWM in figure S1.

Architecture and optimization. All of our models use a ViT-B/16 encoder trained for 300 epochs on ImageNet.
We use the AdamW optimizer Loshchilov and Hutter (2019) with 1 x 1073 as our learning. We further use
B1 = 0.9 and By = 0.999. The learning rate follows a linear warmup for 40 epochs and then a cosine annealing.
We use an iteration per epoch scale of 1.25 for the scheduler, which stretches the scheduler and makes the
training end before the end of the schedule. Not having a 0 learning rate near the end of training was found
beneficial in our experiments. We use a cosine weight decay schedule which goes from 0.04 to 0.4.

Source and target. In practice we build the source and target separately by first applying a random crop of
scale between 0.3 and 1. We then apply a horizontal flip with probability 0.5. We will call the resulting image
I.

Target transformations. Starting from I’ we then apply a color jitter with probability 0.8, brightness maximum
strength 0.4, contrast maximum strength 0.4, hue maximum strength 0.1, and saturation maximum strength
0.2.

Source transformations. Starting from I’ we apply a color jitter with probability 0.8, brightness maximum
strength 0.4, contrast maximum strength 0.4, hue maximum strength 0.1, and saturation maximum strength
0.2. A gaussian blur of radius between 0.1 and 2 is applied with probability 0.2, solarization with probability
0.2 and grayscale with probability 0.2. These augmentations correspond to the ones used in BYOL (Grill
et al., 2020). We then generate a mask M, as the union of 4 masks of area between 0.15 and 0.2 of the image,
with aspect ratios between 0.75 and 1.5. All of the patches in M, are then dropped from the source x.

Predictor conditioning. We rely on the feature mixing strategy. Consider a mask token m € R? and a € R* a
vector of k scalars corresponding to augmentation parameters. We first add position embeddings to m to
indicate which patch of the target it needs to predict. We then concatenate m and a and feed them through a
three layer fully-connected network with ReLLU activation and dimensions d, d, d. This gives us a mask token
that contains information about all of the transformation. Both the geometric aspect of where to predict and
details on the photometric augmentations.

A.2 Evaluation

For all evaluations on image classification, the augmentations applied to compute the validation accuracy
are a resize to 256 followed by a 224 by 224 center crop.All hyperparameters reported are the optimal ones,
chosen after careful tuning for every method.

Linear. We take inspiration from the protocol of Chen et al. (2021). We train for 90 epochs on ImageNet.
We sample random crops of images with scale between 0.08 and 1, then apply a horizontal flip with probability
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0.5.

The features are average pooled along the sequence axis to obtain a global representation which is then fed to
a linear layer. We use a batch size of 16,384, with the LARS (You et al., 2017) optimizer and a learning rate
of 6.4 with a warmup of 10 epochs. The learning rate then follows a cosine annealing schedule. Weight decay
is set to 0 and momentum to 0.9.

Attentive. The attentive head is taken from Chen et al. (2023). It consists of a cross attention block where
the attention is computed between an additional token the unpooled representations. This allows an adaptive
pooling strategy. We train for 90 epochs on ImageNet. We sample random crops of images with scale between
0.3 and 1, then apply a horizontal flip with probability 0.5. We also apply the same augmentations as used
for the source transformations besides masking. We use a batch size of 1024 and AdamW optimizer with a
learning rate of 1 x 1074,8; = 0.9, and 2 = 0.999. It follows a cosine annealing schedule. We use a weight
decay of 0.01 kept constant during training.

Encoder finetuning. We append a linear layer to the end of the encoder as for the linear evaluation and train
for 100 epochs on ImageNet. We use the same RandAugment (Cubuk et al., 2020) strategy as MAE (He et al.,
2021) as well as CutMix (Yun et al., 2019) and MixUp (Zhang et al., 2018). For RandAugment we use the
string 'rand-m9-mstd0.5-incl’. We use random erasing with probability 0.25 in pixel mode. We use a mixup
a of 0.8, cutmix « of 1 and label smoothing of 0.1.

For the optimization we use AdamW with a learning rate of 2 x 10™2 with 5 epochs of warmup followed by a
cosine annealing schedule, weight decay of 0.005 and a batch size of 1024. We also use a drop path rate of 0.2
through the encoder and a layer wise learning rate decay of 0.65.

Predictor finetuning. When finetuning the predictor we use an attentive head on top of the predictor output.
We plug the predictor on top of the teacher network and it is tasked with predicting the whole target image,
with null transformation parameters. We use the same augmentation protocol as for encoder finetuning. We
train for 100 epochs on ImageNet with a batch size of 1024. We use AdamW for the optimizer, a learning rate
of 1 x 1072 with a 5 epoch warmup then cosine annealing schedule. We use a weight decay of 0.1, no layer
wise Ir decay and a drop path rate of 0.2 through the predictor. Importantly, if the predictor is pretrained we
divide it’s learning rate by 10, and keep it identical to the attentive if head if random.

D m

'H*I*L

Split batch per [}
task [T

Even batch per task

i

o

Figure S2 Multitask tuning of the predictor. We sample a batch uniformly across task which is then fed through the
predictor with an additional task token, indicating which task is being solved. The predictions are then fed through a
task specific head and losses are summed.

Multitask predictor finetuning. To give a clearer presentation of the protocol, we provide a graphical version
of multitask predictor finetuning in figure S2. For the training in itself, we follow the same protocol as for
predictor finetuning but train for the equivalent of 50 ImageNet epochs. The batch size used is 512 for each
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task, where the batch is independently split between tasks. When training on a single task, we simply use 512
as the batch size and also train for 50 ImageNet epochs.

End to end finetuning. We follow the protocol of predictor finetuning but tweak certain parameters. First,
the encoder also gets his learning rate divided by 10 like the predictor. The factors are treated separately
and ablated for all methods. We use a 0.9 layer decay across the combination of predictor and encoder. The
learning rate used is 2 x 10~2 and all other parameters are identical to predictor finetuning.

Segmentation. We give here details about our protocol for semantic segmentation evaluations. We use the
MMSegmentation library Contributors (2020). We fine-tune our pretrained models (either encoder only,
predictor only, or end-to-end) with an UperNet head Xiao et al. (2018) on the ADE20k semantic segmentation
dataset Zhou et al. (2019) for 160k iterations and report the validation mIoU. We concatenate the last 4 layers
of the predictor, or encoder for encoder only finetuning, and feed the result to the segmentation head. At
training time we resize the images at the pretraining resolution. At testing time we do not resize the images
and interpolate the positional embeddings to the original resolution. For all setups and methods we pick the
best run among several learning rate values: le — 5, 2e — 5 and 3e — 5. We use a weight decay of 0.01 and a
linear learning rate decay schedule.

B Complete finetuning results

Table S1 Complete results of tables 4 and 5.

No predictor Frozen encoder, tuned predictor

Method Epochs End to end
Encoder Random Init. Pretrained
DINO 1600 82.8 82.0 N/A 82.1
MOCOv3 300 83.2 56.4 N/A 79.4
iBOT 1600 84.0 83.0 N/A 82.8
300 82.7 82.4 82.7 (+0.3) 82.3
MAE 600 83.2 82.8 83.0 (10.2) 83.1
1600 83.6 83.0 83.1 (+0.1) 83.3
-JEPA 300 83.0 79.1 80.0 82.0
TWM S, 300 83.3 80.5 81.3 82.7
IWMse, 300 82.7 81.3 82.7 (11.4) 83.3
IWMSS, 300 82.9 81.5 83.3 ( 1.8) 84.4

Equi
12,384

and MoCov3 in predictor finetuning. For IWM%E;A;, we see the same behavior as IWM?Q%@ but with slightly
lower performance. This is consistent across all evaluations. Yet, even when accounting for scale of the
predictor to compare with I-JEPA and IWM{%‘%M, all of our previous conclusions still hold. For MoCov3,
it was the only method which did not perform well when attaching a random predictor to it. While we do
not have conclusive evidence, we hypothesize that it is related to the low norm of its output. Adding a
normalization between the encoder and predictor did not help.

We provide complete results for table 4 and table 5 in table S1. Some interesting behaviors are IWM
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C Impact of data augmentation

Table S2 Impact of data augmentation strategy on IWM’s performance. In all settings, destructive augmentations are
never applied to the target.

. Strengths Probabilities Performance
Predictor
Bright. Contrast Sat. Hue Jitter Blur Gray. Solarize ‘ MRR Linear Attentive Pred. ft.

0.4 0.4 0.2 0.1 0.8 0.2 0.2 0.1 0.09 74.5 77.0 81.3

0.4 0.4 0.2 0.1 0.8 0.11 72.1 76.5 80.5

TWM s 584 0.4 0.4 0.2 0.1 0.8 0.4 0.4 0.2 0.22 71.0 74.9 80.9

' 0.5 0.5 04 02 0.8 0.2 0.2 0.1 0.81 69.3 75.5 82.7

0.5 0.5 04 02 0.8 0.07 73.3 76.3 80.1

0.2 0.2 0.1 0.02 72.9 76.3 80.7

0.4 0.4 0.2 0.1 0.8 0.2 0.2 0.1 0.79 67.5 75.1 83.3

0.4 0.4 0.2 0.1 0.8 0.25 70.1 74.8 81.4

TWMis 350 04 0.4 02 0.1 0.8 0.4 0.4 0.2 0.85 56.1 74.5 83.1

' 0.5 0.5 04 02 0.8 0.2 0.2 0.1 0.85 34.3 71.0 81.7

0.5 0.5 04 0.2 0.8 0.83 69.2 75.8 83.3

0.2 0.2 0.1 0.02 70.9 74.8 81.5

We study in table S2 the impact of augmentations used during pretraining, along with the depth of the
predictor. We notice that depth is a deciding factor in the quality of the learned world model, where 4 out 5
scenarios with color are able to achieve color equivariance for the 18 layer predictor, compared to only 1 for
the 12 layer predictor. The strength of the augmentations also plays a role and too weak augmentations do
not lead to an equivariant model.

On the asymmetry of augmentations. The asymmetry of augmentations is both a conceptual choice, to make
the augmentations used more similar to contrastive approaches, but also a practical one. When learning
an invariant world model with symmetric augmentations we noticed a drop in performance of 2 points on
ImageNet in attentive probing and 1.5 points on linear probing. While this drop is not catastrophic, it is
sufficient to recommend using asymmetric augmentations. As the depth of the predictor decreases, we expect
this gap to widen.

On the other hand, when looking at an equivariant predictor, we did not notice any notable change in
performance. This suggests that learning world models can also help improve stability over the choice of
augmentations. The predictor does not have to be designed by keeping in mind which information may get
removed but only by whether or not it can apply the transformation.

D Impact of the prediction task on predictor finetuning performance

In order to use predictor finetuning to solve downstream tasks, we need to apply a prediction task. We aim at
giving a more combinatorial view of table 3 in this appendix.

Table S3 Predictor finetuning performance which different prediction tasks.

Method Null latents  On teacher Pred only one token Accuracy

v v 83.3

v v v 82.8

v 83.1

v v 82.6

IWMi2 384 v 839
v v 82.8

82.9

v 82.9
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We can see in table S3 that the conclusions drawn from table 3 still hold over a larger setting. Notably, using
null latents is more flexible while not changing performance, using the teacher always gives a small boost in
performance, and predicting only one token lowers performane by roughly half a point.

E Scaling to larger models

In order to scale to larger models, such as a ViT-L/16 encoder, multiple challenges need to be overcome. Notably,
both the depth and the width of the predictor must be scaled in order to increase the number of parameters
of the predictor to a suitable number. Scaling the width can lead to instabilities and hyperparameters such as
the EMA schedule become more important. We noticed that a ratio of predictor weights/encoder weights of
around 0.3 is suitable to learn a good world model.

Table S4 With a ViT-L/16 encoder, we observe a similar trend as with the base model. Significant gains are observed
with a good world model, allowing it to surpass encoder finetuning.

Method Epochs Encoder Predictor End to end

-JEPA 300 84.1 79.9
TWM e, 300 84.3 81.5
IWMgdhi, 300 83.7 85.0 85.4

We study in table S4 the performance when scaling to a larger ViT-L/16. We see that the observation we made
with the smaller ViT-B/16 still hold. The invariant model is the best on encoder finetuning, and predictor
finetuning improves the performance significantly. Here again, end-to-end finetuning leads to performance
gains.

F Evaluation on downstream datasets beyond ImageNet

We evaluated I-JEPA and IWM on iNaturalist18 (Horn et al., 2018), SUN397 (Xiao et al., 2010) and
Places205 (Zhou et al., 2014) using attentive probing. We train our models for 50 epochs on iNaturalist18, 12
for Places205 and 28 for SUN397.

Table S5 When evaluating with attentive probing on downstream task, being equivariant improves performance across
the board. All methods use ViT-B/16 encoders and were pretrained for 300 epochs on ImageNet

Method ImageNet iNatl8 SUN397 Places205

MAE 73.5 50.1 70.2 60.3
-JEPA 75.0 50.4 69.2 58.3
TWM 555, 77.0 51.6 71.0 59.4
TWMise, 75.1 54.2 71.7 60.5

As we can see in table S5, IWM consistently improves over I-JEPA and MAE when pretraining all methods
for 300 epochs. We notice that while IWM?;‘;M is not the top performing model on ImageNet, it significantly
outperforms it’s invariant counterpart, with gains of 2.6 points on iNaturalist, 0.7 points on SUN397 and 1.1
point on Places205. This suggests that while the richness of the representation of an equivariant model is not
optimal for in domain performance, it helps improve generalisation to downstream tasks.
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G \Visualizing representation differences between invariant and equivariant
behavior
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Figure S3 Difference in embedding space between invariant and equivariant behaviours. Each image is augmented 16
times and we compute the similarity matrix between all images. The yellow regions indicate high similarities between
samples originating from the same image. We can see more variations in the equivariant model, or in I-JEPA where
invariance is not enforced. This suggests that augmentations influence the representation more in these models.

As we see in figure S3, the invariant model collapses augmented views to very similar embeddings, as shown
by the high similarity in the diagonal blocks. On the other hand the equivariant model shows more variation,
which shows that augmentation information is more present in the representation. Interestingly, I-JEPA has a
behaviour in between because it was not trained to be either invariant or equivariant. I-JEPA has no force
controlling how information is kept or removed from the representation.

H Onthe meaning and role of invariance in Self-Supervised learning

One of the key component of the success of self-supervised learning is augmentation invariance Chen et al.
(2020a). We can say that we have learned invariant representations if Va, fo(x) = fo(T (a,z)). However there
are many scenarios that satisfy this property. The two main ones that we are interested in are:

e Any augmented view leads to the same information as the clean image
e The encoder removes the information related to the transformation

In the first case, the representations still contain all of the information about the input, whereas in the second
we are removing information that can be deemed superfluous. In the case of contrastive methods, the focus is
usually on removing information. Indeed if an image and its grayscale version are made to have the same
representation, the encoder must remove color information. This is one of the key drivers of performance of
such methods. By removing information until only the semantics of the image remains, the representations
will be easy to leverage for a task such as classification.

We can thus wonder if the first invariance scenario also leads to improved performance, and if we can even
leverage it. As we have demonstrated how IWM is able to preserve information, and we have a predictor that
can apply transformations, we can marginalize over augmentations to create invariant representations in an
efficient way. Here, we do not need to apply the encoder on all augmented views, but can directly use the
predictor which is more compute efficient. If we consider a set of randomly sampled augmentations A such
that card(4) = N we can compute an invariant representation as

Inv _ al
Z sz ma; )
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Figure S4 Retrieval of invariant representations computed using 256 augmentations in latent space. In the top row we
visualize some of the corresponding image and on the bottom the nearest neighbours of the invariant representation.
We can notice that the nearest neighbour is the original non-augmented image, followed by images with small
transformations.

Clean image

Example
augmented views

NN of average
representation

As we can see in figure S4, the images that have representations which are most similar with 21"V are the

clean image and images with small transformations. We also know that our encoder preserves augmentation
related information and is thus not invaraint to transformations. Combining these two facts tells us that the
marginalizaiton process creates a clean representations, akin to the first kind of invariance.

Table S6 Linear evaluation on marginalized representations. Using more augmented prediction to create an invariant
representation does not improve performance.

Number of predictions (N) 1 (default) 8 16 32 128
ImageNet Top-1 accuracy (%) 64.5 64.3 64.6 64.6 64.4

However, when looking at table S6 we can see that no performance gain is present when using invariant
representations obtained by marginalizing over predictions. This is true even with 128 augmented views,
which already increases the compute budget by a factor of around 64. As such, using invariant representations
that preserve the content of the image is not necessarily beneficial for downstream evaluation.

Overall, the key to the success of augmentation invariance in contrastive learning is not just in building
invariant representations, but in the way that the representations are invariant. Building invaraince by
removal of information has been shown to be very effective (Chen et al., 2020a), whereas we see here that
invariance by always predicting the representation of the clean image is not necessarily helpful. This does not
mean that equivariant representations cannot build invariances that are useful from downstream tasks, as the
contrary was shown in Chavhan et al. (2023b), but that we have to be careful in how we create invariant
representations.
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I Additional qualitative evaluations of the world model

Source

NN of
Prediction

Groundtruth

Figure S5 Randomly selected retrieval samples of our world model. For each image, we generate 256 augmented views
and apply transformations in latent space. We then retrieve the nearest neighbor of the prediction and visualize
whether it is close to the groundtruth or not. The learned world model performs well in most settings but has some
inaccuracies with inverting grayscale.

Source

NN of
Prediction

Groundtruth

Figure S6 Randomly selected retrieval samples of our world model. For each image, we generate 256 augmented views
and apply transformations in latent space. We then retrieve the nearest neighbor of the prediction and visualize
whether it is close to the groundtruth or not. The learned world model performs well in most settings but has some
inaccuracies with inverting grayscale.

20



Source

NN of
Prediction

Groundtruth

Figure S7 Randomly selected retrieval samples of our world model. For each image, we generate 256 augmented views
and apply transformations in latent space. We then retrieve the nearest neighbor of the prediction and visualize
whether it is close to the groundtruth or not. The learned world model performs well in most settings but has some
inaccuracies with inverting grayscale.

Source

NN of
Prediction

Groundtruth

Figure S8 Randomly selected retrieval samples of our world model. For each image, we generate 256 augmented views
and apply transformations in latent space. We then retrieve the nearest neighbor of the prediction and visualize
whether it is close to the groundtruth or not. The learned world model performs well in most settings but has some
inaccuracies with inverting grayscale.
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Figure S9 Application of the world model on precise transformations. For each parameter, we vary its value on a grid
to see whether the model is able to predict small changes. The model is able to show the gradient of transformations,
highlighting again the capabilities of the world model. We can still notice some imperfections however, as the model

was only trained on combinations of augmentations. To make changes more visible, we used a model trained with a
strong color jitter for this figure.
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Figure S10 Application of the world model on precise transformations. For each parameter, we vary its value on a grid
to see whether the model is able to predict small changes. The model is able to show the gradient of transformations,
highlighting again the capabilities of the world model. We can still notice some imperfections however, as the model
was only trained on combinations of augmentations. To make changes more visible, we used a model trained with a
strong color jitter for this figure.
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Figure S11 Application of the world model on precise transformations. For each parameter, we vary its value on a grid
to see whether the model is able to predict small changes. The model is able to show the gradient of transformations,
highlighting again the capabilities of the world model. We can still notice some imperfections however, as the model
was only trained on combinations of augmentations. To make changes more visible, we used a model trained with a

strong color jitter for this figure.
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